Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225597390> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4225597390 endingPage "44" @default.
- W4225597390 startingPage "28" @default.
- W4225597390 abstract "This article is devoted to the analysis and prediction of the risk of terrorist acts based on a comparison of various machine learning algorithms. In order to determine the most important indicators, more than thirty external and internal risk factors are comprehensively considered by quantifying them and an initial set of initial data is built. The study analyzes multidimensional socio-economic and political data for 136 countries for the period from 1992 to 2020. Four indicators are also predicted, reflecting the expected success of terrorist attacks, the likelihood of socio-economic consequences and general damage from terrorism. In addition to the classical analysis models, the effectiveness of the other four machine learning algorithms that can be used to analyze multidimensional data is compared. To predict the risk of terrorist attacks, a random forest model is created, and the effectiveness and accuracy of the model are evaluated based on statistical criteria. To determine the most important initial indicators, the method of recursive elimination of features in a random forest was used. The main result of this study is to identify the most important indicators for predicting the risk of terrorism and to reduce redundant indicators, which makes it possible to improve understanding of the main characteristics of attacks. Meanwhile, the results show that it is necessary to take appropriate proactive measures not only in the form of forceful detention, intelligence and response operations, but also to improve the stability of the state, achieve social balance and improve the quality of life of citizens." @default.
- W4225597390 created "2022-05-05" @default.
- W4225597390 creator A5018677693 @default.
- W4225597390 date "2022-01-01" @default.
- W4225597390 modified "2023-09-26" @default.
- W4225597390 title "Forecasting the risk of terrorist attacks based on machine learning algorithms" @default.
- W4225597390 cites W1976231109 @default.
- W4225597390 cites W2015780861 @default.
- W4225597390 cites W2091449379 @default.
- W4225597390 cites W2115682136 @default.
- W4225597390 cites W2135281449 @default.
- W4225597390 cites W2139147357 @default.
- W4225597390 cites W2143426320 @default.
- W4225597390 cites W2160861243 @default.
- W4225597390 cites W2170121971 @default.
- W4225597390 cites W2171476201 @default.
- W4225597390 cites W2623984645 @default.
- W4225597390 cites W2736101782 @default.
- W4225597390 cites W2765898401 @default.
- W4225597390 cites W2790235152 @default.
- W4225597390 cites W2919666686 @default.
- W4225597390 cites W2944102862 @default.
- W4225597390 cites W2963328335 @default.
- W4225597390 cites W2980397812 @default.
- W4225597390 cites W3122881352 @default.
- W4225597390 cites W3123417915 @default.
- W4225597390 cites W3125108001 @default.
- W4225597390 doi "https://doi.org/10.7256/2454-0668.2022.1.36596" @default.
- W4225597390 hasPublicationYear "2022" @default.
- W4225597390 type Work @default.
- W4225597390 citedByCount "0" @default.
- W4225597390 crossrefType "journal-article" @default.
- W4225597390 hasAuthorship W4225597390A5018677693 @default.
- W4225597390 hasBestOaLocation W42255973901 @default.
- W4225597390 hasConcept C10138342 @default.
- W4225597390 hasConcept C111472728 @default.
- W4225597390 hasConcept C112930515 @default.
- W4225597390 hasConcept C112972136 @default.
- W4225597390 hasConcept C119857082 @default.
- W4225597390 hasConcept C138885662 @default.
- W4225597390 hasConcept C154945302 @default.
- W4225597390 hasConcept C162324750 @default.
- W4225597390 hasConcept C166957645 @default.
- W4225597390 hasConcept C169258074 @default.
- W4225597390 hasConcept C177264268 @default.
- W4225597390 hasConcept C182306322 @default.
- W4225597390 hasConcept C199360897 @default.
- W4225597390 hasConcept C203133693 @default.
- W4225597390 hasConcept C2779530757 @default.
- W4225597390 hasConcept C41008148 @default.
- W4225597390 hasConcept C71924100 @default.
- W4225597390 hasConcept C95457728 @default.
- W4225597390 hasConceptScore W4225597390C10138342 @default.
- W4225597390 hasConceptScore W4225597390C111472728 @default.
- W4225597390 hasConceptScore W4225597390C112930515 @default.
- W4225597390 hasConceptScore W4225597390C112972136 @default.
- W4225597390 hasConceptScore W4225597390C119857082 @default.
- W4225597390 hasConceptScore W4225597390C138885662 @default.
- W4225597390 hasConceptScore W4225597390C154945302 @default.
- W4225597390 hasConceptScore W4225597390C162324750 @default.
- W4225597390 hasConceptScore W4225597390C166957645 @default.
- W4225597390 hasConceptScore W4225597390C169258074 @default.
- W4225597390 hasConceptScore W4225597390C177264268 @default.
- W4225597390 hasConceptScore W4225597390C182306322 @default.
- W4225597390 hasConceptScore W4225597390C199360897 @default.
- W4225597390 hasConceptScore W4225597390C203133693 @default.
- W4225597390 hasConceptScore W4225597390C2779530757 @default.
- W4225597390 hasConceptScore W4225597390C41008148 @default.
- W4225597390 hasConceptScore W4225597390C71924100 @default.
- W4225597390 hasConceptScore W4225597390C95457728 @default.
- W4225597390 hasIssue "1" @default.
- W4225597390 hasLocation W42255973901 @default.
- W4225597390 hasOpenAccess W4225597390 @default.
- W4225597390 hasPrimaryLocation W42255973901 @default.
- W4225597390 hasRelatedWork W2911455822 @default.
- W4225597390 hasRelatedWork W3018959556 @default.
- W4225597390 hasRelatedWork W3174196512 @default.
- W4225597390 hasRelatedWork W3211546796 @default.
- W4225597390 hasRelatedWork W4281560664 @default.
- W4225597390 hasRelatedWork W4281616679 @default.
- W4225597390 hasRelatedWork W4293525103 @default.
- W4225597390 hasRelatedWork W4308191010 @default.
- W4225597390 hasRelatedWork W4318350883 @default.
- W4225597390 hasRelatedWork W4323021782 @default.
- W4225597390 isParatext "false" @default.
- W4225597390 isRetracted "false" @default.
- W4225597390 workType "article" @default.