Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225604080> ?p ?o ?g. }
- W4225604080 endingPage "1272" @default.
- W4225604080 startingPage "1263" @default.
- W4225604080 abstract "Aspiration is a serious complication of swallowing disorders. Adequate detection of aspiration is essential in dysphagia management and treatment. High-resolution cervical auscultation has been increasingly considered as a promising noninvasive swallowing screening tool and has inspired automatic diagnosis with advanced algorithms. The performance of such algorithms relies heavily on the amount of training data. However, the practical collection of cervical auscultation signal is an expensive and time-consuming process because of the clinical settings and trained experts needed for acquisition and interpretations. Furthermore, the relatively infrequent incidence of severe airway invasion during swallowing studies constrains the performance of machine learning models. Here, we produced supplementary training exemplars for desired class by capturing the underlying distribution of original cervical auscultation signal features using auxiliary classifier Wasserstein generative adversarial networks. A 10-fold subject cross-validation was conducted on 2079 sets of 36-dimensional signal features collected from 189 patients undergoing swallowing examinations. The proposed data augmentation outperforms basic data sampling, cost-sensitive learning and other generative models with significant enhancement. This demonstrates the remarkable potential of proposed network in improving classification performance using cervical auscultation signals and paves the way of developing accurate noninvasive swallowing evaluation in dysphagia care." @default.
- W4225604080 created "2022-05-05" @default.
- W4225604080 creator A5016906315 @default.
- W4225604080 creator A5021674350 @default.
- W4225604080 creator A5031279847 @default.
- W4225604080 creator A5090149160 @default.
- W4225604080 date "2022-03-01" @default.
- W4225604080 modified "2023-10-15" @default.
- W4225604080 title "Improving Non-Invasive Aspiration Detection With Auxiliary Classifier Wasserstein Generative Adversarial Networks" @default.
- W4225604080 cites W1967494799 @default.
- W4225604080 cites W1968436181 @default.
- W4225604080 cites W1982993926 @default.
- W4225604080 cites W1993008420 @default.
- W4225604080 cites W2015334195 @default.
- W4225604080 cites W2015452969 @default.
- W4225604080 cites W2018201092 @default.
- W4225604080 cites W2052000467 @default.
- W4225604080 cites W2071213031 @default.
- W4225604080 cites W2081280656 @default.
- W4225604080 cites W2086464186 @default.
- W4225604080 cites W2106706488 @default.
- W4225604080 cites W2107797622 @default.
- W4225604080 cites W2108011803 @default.
- W4225604080 cites W2109553965 @default.
- W4225604080 cites W2123054080 @default.
- W4225604080 cites W2143014063 @default.
- W4225604080 cites W2148143831 @default.
- W4225604080 cites W2167113242 @default.
- W4225604080 cites W2290546137 @default.
- W4225604080 cites W2586884333 @default.
- W4225604080 cites W2756182389 @default.
- W4225604080 cites W2771336279 @default.
- W4225604080 cites W2785933479 @default.
- W4225604080 cites W2794022343 @default.
- W4225604080 cites W2804566321 @default.
- W4225604080 cites W2887336235 @default.
- W4225604080 cites W2898664946 @default.
- W4225604080 cites W2914392558 @default.
- W4225604080 cites W2957299183 @default.
- W4225604080 cites W2963181848 @default.
- W4225604080 cites W2973166642 @default.
- W4225604080 cites W2999309192 @default.
- W4225604080 cites W3018833029 @default.
- W4225604080 cites W3030237993 @default.
- W4225604080 cites W3033575927 @default.
- W4225604080 cites W3087576084 @default.
- W4225604080 cites W3091161122 @default.
- W4225604080 cites W3101667008 @default.
- W4225604080 cites W3107050463 @default.
- W4225604080 cites W3120644841 @default.
- W4225604080 cites W3133342712 @default.
- W4225604080 cites W4250746658 @default.
- W4225604080 doi "https://doi.org/10.1109/jbhi.2021.3106565" @default.
- W4225604080 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34415842" @default.
- W4225604080 hasPublicationYear "2022" @default.
- W4225604080 type Work @default.
- W4225604080 citedByCount "4" @default.
- W4225604080 countsByYear W42256040802022 @default.
- W4225604080 countsByYear W42256040802023 @default.
- W4225604080 crossrefType "journal-article" @default.
- W4225604080 hasAuthorship W4225604080A5016906315 @default.
- W4225604080 hasAuthorship W4225604080A5021674350 @default.
- W4225604080 hasAuthorship W4225604080A5031279847 @default.
- W4225604080 hasAuthorship W4225604080A5090149160 @default.
- W4225604080 hasBestOaLocation W42256040802 @default.
- W4225604080 hasConcept C108583219 @default.
- W4225604080 hasConcept C112497637 @default.
- W4225604080 hasConcept C119857082 @default.
- W4225604080 hasConcept C126838900 @default.
- W4225604080 hasConcept C153180895 @default.
- W4225604080 hasConcept C154945302 @default.
- W4225604080 hasConcept C2777324038 @default.
- W4225604080 hasConcept C2780596822 @default.
- W4225604080 hasConcept C2988773926 @default.
- W4225604080 hasConcept C41008148 @default.
- W4225604080 hasConcept C71924100 @default.
- W4225604080 hasConcept C95623464 @default.
- W4225604080 hasConceptScore W4225604080C108583219 @default.
- W4225604080 hasConceptScore W4225604080C112497637 @default.
- W4225604080 hasConceptScore W4225604080C119857082 @default.
- W4225604080 hasConceptScore W4225604080C126838900 @default.
- W4225604080 hasConceptScore W4225604080C153180895 @default.
- W4225604080 hasConceptScore W4225604080C154945302 @default.
- W4225604080 hasConceptScore W4225604080C2777324038 @default.
- W4225604080 hasConceptScore W4225604080C2780596822 @default.
- W4225604080 hasConceptScore W4225604080C2988773926 @default.
- W4225604080 hasConceptScore W4225604080C41008148 @default.
- W4225604080 hasConceptScore W4225604080C71924100 @default.
- W4225604080 hasConceptScore W4225604080C95623464 @default.
- W4225604080 hasFunder F4320332161 @default.
- W4225604080 hasFunder F4320337611 @default.
- W4225604080 hasIssue "3" @default.
- W4225604080 hasLocation W42256040801 @default.
- W4225604080 hasLocation W42256040802 @default.
- W4225604080 hasLocation W42256040803 @default.
- W4225604080 hasOpenAccess W4225604080 @default.
- W4225604080 hasPrimaryLocation W42256040801 @default.
- W4225604080 hasRelatedWork W1998848462 @default.