Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225625536> ?p ?o ?g. }
- W4225625536 endingPage "2305" @default.
- W4225625536 startingPage "2277" @default.
- W4225625536 abstract "Breast cancer is one of the common reasons for deaths of women over the globe. It has been found that a Computer-Aided Diagnosis (CAD) system can be designed using X-ray mammograms for early-stage detection of breast cancer, which can decrease the death rate to a large extent. This paper work proposes a novel 2-way threshold-based intelligent water drops IWD “algorithm for feature selection to design an effective and efficient CAD system that can detect breast cancer in early stage. This approach first extracts the local binary patterns in wavelet domain from mammograms and then applies our introduced 2-way threshold-based IWD algorithm to extract most important subset of features from the extracted features set. Two-way thresholding is a technique to find a lower bound and an upper bound on the number of features to be selected in the optimal subset. So, using these threshold values, IWD is capable of producing multiple optimal subsets of features rather than producing a single optimal subset of features. The best subset among the above subsets is then used to train and deploy support vector machine (SVM) to classify new mammograms. The results have shown that the proposed model outperforms many of the existing CAD systems. Further we have compared our introduced feature selection technique with other meta-heuristic features selection techniques such as ant colony optimization, particle swarm optimization, simulated annealing, genetic algorithm, gravitational search algorithm, inclined planes optimization and gray wolf optimization algorithm and found that it outperforms the other feature selection techniques. The accuracy, precision, recall, specificity and F1-score of our proposed framework are measured on MIAS dataset as 99%, 98.7%, 98.123%, 96.2% and 98.4%, respectively, and on DDSM dataset as 97.89%, 96.9%, 96.4%, 94.8% and 96.2%." @default.
- W4225625536 created "2022-05-05" @default.
- W4225625536 creator A5022530074 @default.
- W4225625536 creator A5042617064 @default.
- W4225625536 creator A5050934066 @default.
- W4225625536 date "2021-11-23" @default.
- W4225625536 modified "2023-10-11" @default.
- W4225625536 title "Two-way threshold-based intelligent water drops feature selection algorithm for accurate detection of breast cancer" @default.
- W4225625536 cites W1543715688 @default.
- W4225625536 cites W1549906179 @default.
- W4225625536 cites W1970594794 @default.
- W4225625536 cites W1978167298 @default.
- W4225625536 cites W2017337590 @default.
- W4225625536 cites W2017387114 @default.
- W4225625536 cites W2019432703 @default.
- W4225625536 cites W2025638095 @default.
- W4225625536 cites W2030363461 @default.
- W4225625536 cites W2035009069 @default.
- W4225625536 cites W2038245294 @default.
- W4225625536 cites W2038326629 @default.
- W4225625536 cites W2040884411 @default.
- W4225625536 cites W2055631528 @default.
- W4225625536 cites W2060148898 @default.
- W4225625536 cites W2061438946 @default.
- W4225625536 cites W2070644180 @default.
- W4225625536 cites W2072955302 @default.
- W4225625536 cites W2086208228 @default.
- W4225625536 cites W2107941094 @default.
- W4225625536 cites W2108394857 @default.
- W4225625536 cites W2109871600 @default.
- W4225625536 cites W2119982438 @default.
- W4225625536 cites W2127085684 @default.
- W4225625536 cites W2128306614 @default.
- W4225625536 cites W2131332502 @default.
- W4225625536 cites W2131617873 @default.
- W4225625536 cites W2135210746 @default.
- W4225625536 cites W2168009894 @default.
- W4225625536 cites W2168825483 @default.
- W4225625536 cites W2169388041 @default.
- W4225625536 cites W2174096823 @default.
- W4225625536 cites W2178957972 @default.
- W4225625536 cites W2271473780 @default.
- W4225625536 cites W2318180822 @default.
- W4225625536 cites W2414040782 @default.
- W4225625536 cites W2485930231 @default.
- W4225625536 cites W2547468946 @default.
- W4225625536 cites W2559937118 @default.
- W4225625536 cites W2612473079 @default.
- W4225625536 cites W2623286609 @default.
- W4225625536 cites W2734402721 @default.
- W4225625536 cites W2744239986 @default.
- W4225625536 cites W2771583293 @default.
- W4225625536 cites W2789326396 @default.
- W4225625536 cites W2789813974 @default.
- W4225625536 cites W2794164983 @default.
- W4225625536 cites W2898701277 @default.
- W4225625536 cites W2898907031 @default.
- W4225625536 cites W2899844231 @default.
- W4225625536 cites W2917527716 @default.
- W4225625536 cites W2930216851 @default.
- W4225625536 cites W2940901905 @default.
- W4225625536 cites W2951116392 @default.
- W4225625536 cites W2955717168 @default.
- W4225625536 cites W2985267475 @default.
- W4225625536 cites W3087652231 @default.
- W4225625536 cites W3093747015 @default.
- W4225625536 cites W3095649509 @default.
- W4225625536 cites W3168796526 @default.
- W4225625536 cites W4210580908 @default.
- W4225625536 cites W4235274738 @default.
- W4225625536 cites W4245765182 @default.
- W4225625536 cites W4247661810 @default.
- W4225625536 cites W4247742487 @default.
- W4225625536 doi "https://doi.org/10.1007/s00500-021-06498-3" @default.
- W4225625536 hasPublicationYear "2021" @default.
- W4225625536 type Work @default.
- W4225625536 citedByCount "15" @default.
- W4225625536 countsByYear W42256255362022 @default.
- W4225625536 countsByYear W42256255362023 @default.
- W4225625536 crossrefType "journal-article" @default.
- W4225625536 hasAuthorship W4225625536A5022530074 @default.
- W4225625536 hasAuthorship W4225625536A5042617064 @default.
- W4225625536 hasAuthorship W4225625536A5050934066 @default.
- W4225625536 hasBestOaLocation W42256255362 @default.
- W4225625536 hasConcept C11413529 @default.
- W4225625536 hasConcept C115961682 @default.
- W4225625536 hasConcept C12267149 @default.
- W4225625536 hasConcept C126980161 @default.
- W4225625536 hasConcept C148483581 @default.
- W4225625536 hasConcept C153180895 @default.
- W4225625536 hasConcept C154945302 @default.
- W4225625536 hasConcept C191178318 @default.
- W4225625536 hasConcept C41008148 @default.
- W4225625536 hasConcept C85617194 @default.
- W4225625536 hasConceptScore W4225625536C11413529 @default.
- W4225625536 hasConceptScore W4225625536C115961682 @default.
- W4225625536 hasConceptScore W4225625536C12267149 @default.
- W4225625536 hasConceptScore W4225625536C126980161 @default.