Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225630314> ?p ?o ?g. }
- W4225630314 endingPage "e28457" @default.
- W4225630314 startingPage "e28457" @default.
- W4225630314 abstract "Background: The classification of a respondent's opinions online into positive and negative classes using a minimal number of questions is gradually changing and helps turn techniques into practices. A survey incorporating convolutional neural networks (CNNs) into web-based computerized adaptive testing (CAT) was used to collect perceptions on My Health Bank (MHB) from users in Taiwan. This study designed an online module to accurately and efficiently turn a respondent's perceptions into positive and negative classes using CNNs and web-based CAT. Methods: In all, 640 patients, family members, and caregivers with ages ranging from 20 to 70 years who were registered MHB users were invited to complete a 3-domain, 26-item, 5-category questionnaire asking about their perceptions on MHB (PMHB26) in 2019. The CNN algorithm and k-means clustering were used for dividing respondents into 2 classes of unsatisfied and satisfied classes and building a PMHB26 predictive model to estimate parameters. Exploratory factor analysis, the Rasch model, and descriptive statistics were used to examine the demographic characteristics and PMHB26 factors that were suitable for use in CNNs and Rasch multidimensional CAT (MCAT). An application was then designed to classify MHB perceptions. Results: We found that 3 construct factors were extracted from PMHB26. The reliability of PMHB26 for each subscale beyond 0.94 was evident based on internal consistency and stability in the data. We further found the following: the accuracy of PMHB26 with CNN yields a higher accuracy rate (0.98) with an area under the curve of 0.98 (95% confidence interval, 0.97–0.99) based on the 391 returned questionnaires; and for the efficiency, approximately one-third of the items were not necessary to answer in reducing the respondents’ burdens using Rasch MCAT. Conclusions: The PMHB26 CNN model, combined with the Rasch online MCAT, is recommended for improving the accuracy and efficiency of classifying patients’ perceptions of MHB utility. An application developed for helping respondents self-assess the MHB cocreation of value can be applied to other surveys in the future." @default.
- W4225630314 created "2022-05-05" @default.
- W4225630314 creator A5003040191 @default.
- W4225630314 creator A5036005009 @default.
- W4225630314 creator A5047464316 @default.
- W4225630314 date "2021-12-30" @default.
- W4225630314 modified "2023-09-30" @default.
- W4225630314 title "An application for classifying perceptions on my health bank in Taiwan using convolutional neural networks and web-based computerized adaptive testing" @default.
- W4225630314 cites W1977883461 @default.
- W4225630314 cites W1993997587 @default.
- W4225630314 cites W2019633397 @default.
- W4225630314 cites W2029193866 @default.
- W4225630314 cites W2034825773 @default.
- W4225630314 cites W2051039162 @default.
- W4225630314 cites W2064544760 @default.
- W4225630314 cites W2066275773 @default.
- W4225630314 cites W2070493638 @default.
- W4225630314 cites W2071173895 @default.
- W4225630314 cites W2078763067 @default.
- W4225630314 cites W2083638388 @default.
- W4225630314 cites W2100063939 @default.
- W4225630314 cites W2102684456 @default.
- W4225630314 cites W2131175094 @default.
- W4225630314 cites W2140785063 @default.
- W4225630314 cites W2163255932 @default.
- W4225630314 cites W2169447546 @default.
- W4225630314 cites W2188368664 @default.
- W4225630314 cites W2254046164 @default.
- W4225630314 cites W2287076194 @default.
- W4225630314 cites W2290138556 @default.
- W4225630314 cites W2466644270 @default.
- W4225630314 cites W2474979179 @default.
- W4225630314 cites W2531405743 @default.
- W4225630314 cites W2546819379 @default.
- W4225630314 cites W2561981131 @default.
- W4225630314 cites W271526086 @default.
- W4225630314 cites W2732390135 @default.
- W4225630314 cites W2800167607 @default.
- W4225630314 cites W2801490189 @default.
- W4225630314 cites W2901427516 @default.
- W4225630314 cites W2901643192 @default.
- W4225630314 cites W2904211736 @default.
- W4225630314 cites W2942975361 @default.
- W4225630314 cites W2947377333 @default.
- W4225630314 cites W2949497754 @default.
- W4225630314 cites W2964897044 @default.
- W4225630314 cites W2971361125 @default.
- W4225630314 cites W2971370145 @default.
- W4225630314 cites W2996862733 @default.
- W4225630314 cites W2996966257 @default.
- W4225630314 cites W2997375621 @default.
- W4225630314 cites W2997961818 @default.
- W4225630314 cites W3003234538 @default.
- W4225630314 cites W3012990848 @default.
- W4225630314 cites W3015582950 @default.
- W4225630314 cites W3020727170 @default.
- W4225630314 cites W3027792238 @default.
- W4225630314 cites W3033798243 @default.
- W4225630314 cites W4230900352 @default.
- W4225630314 cites W4235678817 @default.
- W4225630314 cites W4236137412 @default.
- W4225630314 cites W919187098 @default.
- W4225630314 doi "https://doi.org/10.1097/md.0000000000028457" @default.
- W4225630314 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34967385" @default.
- W4225630314 hasPublicationYear "2021" @default.
- W4225630314 type Work @default.
- W4225630314 citedByCount "2" @default.
- W4225630314 countsByYear W42256303142022 @default.
- W4225630314 countsByYear W42256303142023 @default.
- W4225630314 crossrefType "journal-article" @default.
- W4225630314 hasAuthorship W4225630314A5003040191 @default.
- W4225630314 hasAuthorship W4225630314A5036005009 @default.
- W4225630314 hasAuthorship W4225630314A5047464316 @default.
- W4225630314 hasBestOaLocation W42256303141 @default.
- W4225630314 hasConcept C101266164 @default.
- W4225630314 hasConcept C105795698 @default.
- W4225630314 hasConcept C119857082 @default.
- W4225630314 hasConcept C121332964 @default.
- W4225630314 hasConcept C154945302 @default.
- W4225630314 hasConcept C15744967 @default.
- W4225630314 hasConcept C163258240 @default.
- W4225630314 hasConcept C165957694 @default.
- W4225630314 hasConcept C169760540 @default.
- W4225630314 hasConcept C171606756 @default.
- W4225630314 hasConcept C17744445 @default.
- W4225630314 hasConcept C199539241 @default.
- W4225630314 hasConcept C26760741 @default.
- W4225630314 hasConcept C2776640315 @default.
- W4225630314 hasConcept C33923547 @default.
- W4225630314 hasConcept C39896193 @default.
- W4225630314 hasConcept C41008148 @default.
- W4225630314 hasConcept C43214815 @default.
- W4225630314 hasConcept C62520636 @default.
- W4225630314 hasConcept C70410870 @default.
- W4225630314 hasConcept C71924100 @default.
- W4225630314 hasConcept C73555534 @default.
- W4225630314 hasConcept C81363708 @default.
- W4225630314 hasConceptScore W4225630314C101266164 @default.