Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225641119> ?p ?o ?g. }
- W4225641119 endingPage "e13188" @default.
- W4225641119 startingPage "e13188" @default.
- W4225641119 abstract "Microorganisms participate in the soil biogeochemical cycle. Therefore, investigating variations in microbial biomass, composition, and functions can provide a reference for improving soil ecological quality due to the sensitivity of microorganisms to vegetation coverage changes. However, the differences in soil microorganisms between shrubland and meadow have not been investigated in ecologically vulnerable subalpine areas. This study aimed to investigate the biochemical composition and functions of the soil microbial community under two shrublands and a meadow at high altitudes (3,400-3,550 m). Three sites under two shrublands, Rhododendron thymifolium (RHO) and Potentilla fruticosa (POT), and one meadow dominated by Kobresia myosuroides (MEA), were selected on the southern slope of the Qilian Mountains on the northeastern edge of the Qinghai-Tibetan Plateau, China. Soil physicochemical properties, the microbial community composition expressed by the phospholipid fatty acid (PLFA) biomarker, and enzyme activities were analyzed as well as their relationships. The results showed that water holding capacity and the soil carbon, nitrogen, and potassium content in RHO and POT were higher than those in the MEA. Moreover, the soil active carbon, dissolved organic carbon, total nitrogen, and dissolved total nitrogen content in RHO were higher than those in POT. The abundance of total PLFAs, bacteria, and fungi beneath the shrublands was considerably higher than that in the MEA. The PLFA abundance in RHO was significantly higher than that in POT. The fungal-to-bacterial ratio of RHO and POT was significantly higher than that in the MEA. The activities of β-glucosidase, cellobiohydrolase, and leucine aminopeptidase were the highest in RHO among the three vegetation types, followed by POT and MEA. The redundancy analysis indicated that the biochemical composition of the soil microorganisms and enzyme activities were driven by total nitrogen, dissolved organic carbon, water holding capacity, and soil organic carbon. Therefore, shrublands, which have higher biomass, can improve soil moisture status, increase soil carbon and nitrogen content (especially active carbon and active nitrogen), and further increase the abundance of total PLFAs, bacteria, and fungi. The increase of microbial biomass indirectly enhances the activity of relevant soil enzymes. The variations in PLFA abundance and enzyme activities can be attributed to shrub species, especially evergreen shrubs, which create more favorable conditions for soil microorganisms. This study provides a theoretical basis for investigating the soil biogeochemical cycle and a scientific basis for soil management and vegetation restoration in the subalpine regions." @default.
- W4225641119 created "2022-05-05" @default.
- W4225641119 creator A5022322782 @default.
- W4225641119 creator A5024074896 @default.
- W4225641119 creator A5051462519 @default.
- W4225641119 creator A5073670264 @default.
- W4225641119 creator A5091892339 @default.
- W4225641119 date "2022-04-04" @default.
- W4225641119 modified "2023-10-18" @default.
- W4225641119 title "Biochemical composition and function of subalpine shrubland and meadow soil microbiomes in the Qilian Mountains, Qinghai–Tibetan plateau, China" @default.
- W4225641119 cites W1822800202 @default.
- W4225641119 cites W1916877691 @default.
- W4225641119 cites W1964868024 @default.
- W4225641119 cites W1967549432 @default.
- W4225641119 cites W1970253125 @default.
- W4225641119 cites W1981473932 @default.
- W4225641119 cites W1985343940 @default.
- W4225641119 cites W2012986022 @default.
- W4225641119 cites W2018928076 @default.
- W4225641119 cites W2054008532 @default.
- W4225641119 cites W2068248597 @default.
- W4225641119 cites W2072378931 @default.
- W4225641119 cites W2084782848 @default.
- W4225641119 cites W2087868209 @default.
- W4225641119 cites W2095589143 @default.
- W4225641119 cites W2097454078 @default.
- W4225641119 cites W2099257561 @default.
- W4225641119 cites W2099626946 @default.
- W4225641119 cites W2116598828 @default.
- W4225641119 cites W2129427686 @default.
- W4225641119 cites W2134228384 @default.
- W4225641119 cites W2145492568 @default.
- W4225641119 cites W2278272620 @default.
- W4225641119 cites W2461656083 @default.
- W4225641119 cites W2480056040 @default.
- W4225641119 cites W2484530737 @default.
- W4225641119 cites W2494579702 @default.
- W4225641119 cites W2508177270 @default.
- W4225641119 cites W2590421054 @default.
- W4225641119 cites W2592108751 @default.
- W4225641119 cites W2608624599 @default.
- W4225641119 cites W2767548271 @default.
- W4225641119 cites W2783763427 @default.
- W4225641119 cites W2787175284 @default.
- W4225641119 cites W2789555382 @default.
- W4225641119 cites W2789862838 @default.
- W4225641119 cites W2794262965 @default.
- W4225641119 cites W2799393492 @default.
- W4225641119 cites W2803738439 @default.
- W4225641119 cites W2887211781 @default.
- W4225641119 cites W2888554185 @default.
- W4225641119 cites W2897793560 @default.
- W4225641119 cites W2902973867 @default.
- W4225641119 cites W2910689128 @default.
- W4225641119 cites W2911189479 @default.
- W4225641119 cites W2914836684 @default.
- W4225641119 cites W2924892122 @default.
- W4225641119 cites W2954269611 @default.
- W4225641119 cites W2954315845 @default.
- W4225641119 cites W2955657624 @default.
- W4225641119 cites W2961156855 @default.
- W4225641119 cites W2963172963 @default.
- W4225641119 cites W2974370660 @default.
- W4225641119 cites W2991335389 @default.
- W4225641119 cites W3005534877 @default.
- W4225641119 cites W3022674100 @default.
- W4225641119 cites W3046967893 @default.
- W4225641119 cites W3092623833 @default.
- W4225641119 cites W3118658318 @default.
- W4225641119 cites W3129257527 @default.
- W4225641119 cites W3154033473 @default.
- W4225641119 cites W3161565612 @default.
- W4225641119 cites W3163629382 @default.
- W4225641119 cites W3170780424 @default.
- W4225641119 cites W4234424799 @default.
- W4225641119 cites W597515655 @default.
- W4225641119 doi "https://doi.org/10.7717/peerj.13188" @default.
- W4225641119 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35402098" @default.
- W4225641119 hasPublicationYear "2022" @default.
- W4225641119 type Work @default.
- W4225641119 citedByCount "0" @default.
- W4225641119 crossrefType "journal-article" @default.
- W4225641119 hasAuthorship W4225641119A5022322782 @default.
- W4225641119 hasAuthorship W4225641119A5024074896 @default.
- W4225641119 hasAuthorship W4225641119A5051462519 @default.
- W4225641119 hasAuthorship W4225641119A5073670264 @default.
- W4225641119 hasAuthorship W4225641119A5091892339 @default.
- W4225641119 hasBestOaLocation W42256411191 @default.
- W4225641119 hasConcept C110872660 @default.
- W4225641119 hasConcept C159750122 @default.
- W4225641119 hasConcept C18903297 @default.
- W4225641119 hasConcept C39432304 @default.
- W4225641119 hasConcept C39464130 @default.
- W4225641119 hasConcept C523546767 @default.
- W4225641119 hasConcept C54355233 @default.
- W4225641119 hasConcept C59898753 @default.
- W4225641119 hasConcept C6557445 @default.
- W4225641119 hasConcept C71915725 @default.