Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225641570> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W4225641570 abstract "It was conjectured by Ohba, and proved by Noel, Reed and Wu that $k$-chromatic graphs $G$ with $|V(G)| le 2k+1$ are chromatic-choosable. This upper bound on $|V(G)|$ is tight: if $k$ is even, then $K_{3 star (k/2+1), 1 star (k/2-1)}$ and $K_{4, 2 star (k-1)}$ are $k$-chromatic graphs with $2 k+2$ vertices that are not chromatic-choosable. It was proved in [arXiv:2201.02060] that these are the only non-$k$-choosable complete $k$-partite graphs with $2k+2$ vertices. For $G =K_{3 star (k/2+1), 1 star (k/2-1)}$ or $K_{4, 2 star (k-1)}$, a bad list assignment of $G$ is a $k$-list assignment $L$ of $G$ such that $G$ is not $L$-colourable. Bad list assignments for $G=K_{4, 2 star (k-1)}$ were characterized in [Discrete Mathematics 244 (2002), 55-66]. In this paper, we first give a simpler proof of this result, and then we characterize bad list assignments for $G=K_{3 star (k/2+1), 1 star (k/2-1)}$. Using these results, we characterize all non-$k$-choosable (non-complete) $k$-partite graphs with $2k+2$ vertices." @default.
- W4225641570 created "2022-05-05" @default.
- W4225641570 creator A5012752244 @default.
- W4225641570 creator A5020969478 @default.
- W4225641570 date "2022-02-20" @default.
- W4225641570 modified "2023-09-24" @default.
- W4225641570 title "Bad list assignments for non-$k$-choosable $k$-chromatic graphs with $2k+2$-vertices" @default.
- W4225641570 doi "https://doi.org/10.48550/arxiv.2202.09756" @default.
- W4225641570 hasPublicationYear "2022" @default.
- W4225641570 type Work @default.
- W4225641570 citedByCount "0" @default.
- W4225641570 crossrefType "posted-content" @default.
- W4225641570 hasAuthorship W4225641570A5012752244 @default.
- W4225641570 hasAuthorship W4225641570A5020969478 @default.
- W4225641570 hasBestOaLocation W42256415701 @default.
- W4225641570 hasConcept C114614502 @default.
- W4225641570 hasConcept C118615104 @default.
- W4225641570 hasConcept C121332964 @default.
- W4225641570 hasConcept C132525143 @default.
- W4225641570 hasConcept C134306372 @default.
- W4225641570 hasConcept C149530733 @default.
- W4225641570 hasConcept C196956537 @default.
- W4225641570 hasConcept C199594403 @default.
- W4225641570 hasConcept C203776342 @default.
- W4225641570 hasConcept C2780897414 @default.
- W4225641570 hasConcept C33923547 @default.
- W4225641570 hasConceptScore W4225641570C114614502 @default.
- W4225641570 hasConceptScore W4225641570C118615104 @default.
- W4225641570 hasConceptScore W4225641570C121332964 @default.
- W4225641570 hasConceptScore W4225641570C132525143 @default.
- W4225641570 hasConceptScore W4225641570C134306372 @default.
- W4225641570 hasConceptScore W4225641570C149530733 @default.
- W4225641570 hasConceptScore W4225641570C196956537 @default.
- W4225641570 hasConceptScore W4225641570C199594403 @default.
- W4225641570 hasConceptScore W4225641570C203776342 @default.
- W4225641570 hasConceptScore W4225641570C2780897414 @default.
- W4225641570 hasConceptScore W4225641570C33923547 @default.
- W4225641570 hasLocation W42256415701 @default.
- W4225641570 hasOpenAccess W4225641570 @default.
- W4225641570 hasPrimaryLocation W42256415701 @default.
- W4225641570 hasRelatedWork W1947433718 @default.
- W4225641570 hasRelatedWork W2011383304 @default.
- W4225641570 hasRelatedWork W2099957850 @default.
- W4225641570 hasRelatedWork W2123110140 @default.
- W4225641570 hasRelatedWork W2222132127 @default.
- W4225641570 hasRelatedWork W2513754651 @default.
- W4225641570 hasRelatedWork W2922893498 @default.
- W4225641570 hasRelatedWork W2963363361 @default.
- W4225641570 hasRelatedWork W3121941015 @default.
- W4225641570 hasRelatedWork W4225641570 @default.
- W4225641570 isParatext "false" @default.
- W4225641570 isRetracted "false" @default.
- W4225641570 workType "article" @default.