Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225647542> ?p ?o ?g. }
- W4225647542 abstract "Though there is a strong consensus that word length and frequency are the most important single-word features determining visual-orthographic access to the mental lexicon, there is less agreement as how to best capture syntactic and semantic factors. The traditional approach in cognitive reading research assumes that word predictability from sentence context is best captured by cloze completion probability (CCP) derived from human performance data. We review recent research suggesting that probabilistic language models provide deeper explanations for syntactic and semantic effects than CCP. Then we compare CCP with three probabilistic language models for predicting word viewing times in an English and a German eye tracking sample: (1) Symbolic n-gram models consolidate syntactic and semantic short-range relations by computing the probability of a word to occur, given two preceding words. (2) Topic models rely on subsymbolic representations to capture long-range semantic similarity by word co-occurrence counts in documents. (3) In recurrent neural networks (RNNs), the subsymbolic units are trained to predict the next word, given all preceding words in the sentences. To examine lexical retrieval, these models were used to predict single fixation durations and gaze durations to capture rapidly successful and standard lexical access, and total viewing time to capture late semantic integration. The linear item-level analyses showed greater correlations of all language models with all eye-movement measures than CCP. Then we examined non-linear relations between the different types of predictability and the reading times using generalized additive models. N-gram and RNN probabilities of the present word more consistently predicted reading performance compared with topic models or CCP. For the effects of last-word probability on current-word viewing times, we obtained the best results with n-gram models. Such count-based models seem to best capture short-range access that is still underway when the eyes move on to the subsequent word. The prediction-trained RNN models, in contrast, better predicted early preprocessing of the next word. In sum, our results demonstrate that the different language models account for differential cognitive processes during reading. We discuss these algorithmically concrete blueprints of lexical consolidation as theoretically deep explanations for human reading." @default.
- W4225647542 created "2022-05-05" @default.
- W4225647542 creator A5009816880 @default.
- W4225647542 creator A5021287757 @default.
- W4225647542 creator A5027417635 @default.
- W4225647542 creator A5032339591 @default.
- W4225647542 creator A5033413102 @default.
- W4225647542 date "2022-02-02" @default.
- W4225647542 modified "2023-10-02" @default.
- W4225647542 title "Language Models Explain Word Reading Times Better Than Empirical Predictability" @default.
- W4225647542 cites W1489614140 @default.
- W4225647542 cites W1573659391 @default.
- W4225647542 cites W1682431627 @default.
- W4225647542 cites W1965914122 @default.
- W4225647542 cites W1967163642 @default.
- W4225647542 cites W1975849605 @default.
- W4225647542 cites W1979900603 @default.
- W4225647542 cites W1983578042 @default.
- W4225647542 cites W1983870751 @default.
- W4225647542 cites W1984251878 @default.
- W4225647542 cites W1991766386 @default.
- W4225647542 cites W1996005069 @default.
- W4225647542 cites W1999364590 @default.
- W4225647542 cites W2005181355 @default.
- W4225647542 cites W2013112874 @default.
- W4225647542 cites W2015121227 @default.
- W4225647542 cites W2017952998 @default.
- W4225647542 cites W2019159956 @default.
- W4225647542 cites W2030330674 @default.
- W4225647542 cites W2030831236 @default.
- W4225647542 cites W2057458773 @default.
- W4225647542 cites W2063104203 @default.
- W4225647542 cites W2067359214 @default.
- W4225647542 cites W2068558378 @default.
- W4225647542 cites W2070586582 @default.
- W4225647542 cites W2080248237 @default.
- W4225647542 cites W2081709670 @default.
- W4225647542 cites W2082283091 @default.
- W4225647542 cites W2101073968 @default.
- W4225647542 cites W2101597441 @default.
- W4225647542 cites W2106850936 @default.
- W4225647542 cites W2108010971 @default.
- W4225647542 cites W2110485445 @default.
- W4225647542 cites W2118276816 @default.
- W4225647542 cites W2125001590 @default.
- W4225647542 cites W2126929879 @default.
- W4225647542 cites W2136525955 @default.
- W4225647542 cites W2137738843 @default.
- W4225647542 cites W2138640694 @default.
- W4225647542 cites W2139450036 @default.
- W4225647542 cites W2141138276 @default.
- W4225647542 cites W2147152072 @default.
- W4225647542 cites W2149480836 @default.
- W4225647542 cites W2152885317 @default.
- W4225647542 cites W2153705299 @default.
- W4225647542 cites W2154461458 @default.
- W4225647542 cites W2154796476 @default.
- W4225647542 cites W2155466302 @default.
- W4225647542 cites W2158195707 @default.
- W4225647542 cites W2161475963 @default.
- W4225647542 cites W2165410821 @default.
- W4225647542 cites W2169244873 @default.
- W4225647542 cites W2270070752 @default.
- W4225647542 cites W2415973339 @default.
- W4225647542 cites W2417742387 @default.
- W4225647542 cites W2428904845 @default.
- W4225647542 cites W2470606929 @default.
- W4225647542 cites W2492610080 @default.
- W4225647542 cites W2567682148 @default.
- W4225647542 cites W2623565235 @default.
- W4225647542 cites W2885315449 @default.
- W4225647542 cites W2887750129 @default.
- W4225647542 cites W2919115771 @default.
- W4225647542 cites W3087624537 @default.
- W4225647542 cites W3112717819 @default.
- W4225647542 cites W3123713096 @default.
- W4225647542 cites W3193071044 @default.
- W4225647542 cites W4241087383 @default.
- W4225647542 doi "https://doi.org/10.3389/frai.2021.730570" @default.
- W4225647542 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35187472" @default.
- W4225647542 hasPublicationYear "2022" @default.
- W4225647542 type Work @default.
- W4225647542 citedByCount "5" @default.
- W4225647542 countsByYear W42256475422023 @default.
- W4225647542 crossrefType "journal-article" @default.
- W4225647542 hasAuthorship W4225647542A5009816880 @default.
- W4225647542 hasAuthorship W4225647542A5021287757 @default.
- W4225647542 hasAuthorship W4225647542A5027417635 @default.
- W4225647542 hasAuthorship W4225647542A5032339591 @default.
- W4225647542 hasAuthorship W4225647542A5033413102 @default.
- W4225647542 hasBestOaLocation W42256475421 @default.
- W4225647542 hasConcept C105795698 @default.
- W4225647542 hasConcept C137293760 @default.
- W4225647542 hasConcept C138885662 @default.
- W4225647542 hasConcept C154945302 @default.
- W4225647542 hasConcept C197640229 @default.
- W4225647542 hasConcept C204321447 @default.
- W4225647542 hasConcept C2777530160 @default.
- W4225647542 hasConcept C33923547 @default.
- W4225647542 hasConcept C41008148 @default.