Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225651337> ?p ?o ?g. }
- W4225651337 endingPage "130701" @default.
- W4225651337 startingPage "130701" @default.
- W4225651337 abstract "Quantum precision measurement is based on the basic principle of quantum mechanics by using the interaction between light, atoms and magnetism to measure physical quantities, also known as precision measurements based on microscopic particle systems and their quantum states. As an important means of quantum precision measurement, interferometer precision measurement technology has great application value in quantum communication. The linear interferometer measures the magnitude of the physical quantity by using the phase change obtained from the measurements, but measurement accuracy is limited and unable to meet the requirements of today's scientific problems for the precision measurement of some physical quantities. On this basis, nonlinear interferometer is able to take advantage of the quantum entangled state, that is, using the two light fields of quantum correlation characteristics to realize quantum enhanced precision measurement, thus greatly improving the measurement sensitivity, Therefore, the scope of application is wider, but the preparation of quantum entangled states has many limitations in practical manipulation. With the maturity of experimental conditions and technology, how to use both of these interferometers to further improve the measurement accuracy of the phase signal so as to break the limitation to shot noise, breaking the standard quantum limit and even approaching to the Heisenberg limit has become a frontier research topic . In this paper, we introduce several methods to improve the accuracy of parameter evaluation in the measurement process by using linear (including an atomic/photon interferometer) and nonlinear interferometer to call quantum resources at different stages. High-precision measurement can be achieved by inputting non-classical states into the interferometer, such as compressed state, bi-fock state, and NOON state. And we also introduce the weak measurement developed for the direct observation of quantum states and its application to non-Hermitian systems, and the multiparameter measurement proposed to eliminate the accuracy balance between parameters. Compared with the first two measurement methods, weak measurement method is based on the weak value amplification principle of an indirect measurement. Measurements are performed virtually without perturbing the quantum system, which does not lead the wave function to collapse, the weak value of the real and virtual part have different physical significance, The combination of weak measurement theory and non-Hermitian system also further improves the measurement sensitivity. Multi-parameter measurement uses quantum entanglement, quantum control and other quantum resources to make the measurement progress reach the Heisenberg limit, which is the current research hotspot in the field of precision measurement. Furthermore, we present a conjecture whether there will be multi-atomic mixing measurements based on atomic spin effects or ultra-high sensitivity measurement instruments with precision of fT or even aT by using other particles detection. Finally, several measurement methods are analyzed and compared with each other, and the development prospect of quantum precision measurement is forecasted." @default.
- W4225651337 created "2022-05-05" @default.
- W4225651337 creator A5019173107 @default.
- W4225651337 creator A5036069811 @default.
- W4225651337 creator A5077265619 @default.
- W4225651337 date "2022-01-01" @default.
- W4225651337 modified "2023-10-01" @default.
- W4225651337 title "Research progress in quantum precision measurements based on linear and nonlinear interferometers" @default.
- W4225651337 cites W1567839966 @default.
- W4225651337 cites W1966046470 @default.
- W4225651337 cites W1966383632 @default.
- W4225651337 cites W1966855781 @default.
- W4225651337 cites W1970782469 @default.
- W4225651337 cites W1972653359 @default.
- W4225651337 cites W1973393954 @default.
- W4225651337 cites W1975430715 @default.
- W4225651337 cites W1977508801 @default.
- W4225651337 cites W1984022603 @default.
- W4225651337 cites W1985847053 @default.
- W4225651337 cites W1991602497 @default.
- W4225651337 cites W1996316523 @default.
- W4225651337 cites W2003138882 @default.
- W4225651337 cites W2004335071 @default.
- W4225651337 cites W2008461752 @default.
- W4225651337 cites W2027245161 @default.
- W4225651337 cites W2029051094 @default.
- W4225651337 cites W2029232010 @default.
- W4225651337 cites W2033666272 @default.
- W4225651337 cites W2034616707 @default.
- W4225651337 cites W2037703543 @default.
- W4225651337 cites W2039037964 @default.
- W4225651337 cites W2041674158 @default.
- W4225651337 cites W2044444923 @default.
- W4225651337 cites W2045243581 @default.
- W4225651337 cites W2051618454 @default.
- W4225651337 cites W2054144999 @default.
- W4225651337 cites W2056451059 @default.
- W4225651337 cites W2057883617 @default.
- W4225651337 cites W2060886844 @default.
- W4225651337 cites W2062558324 @default.
- W4225651337 cites W2065222587 @default.
- W4225651337 cites W2069373270 @default.
- W4225651337 cites W2073368028 @default.
- W4225651337 cites W2079671637 @default.
- W4225651337 cites W2083423624 @default.
- W4225651337 cites W2083893620 @default.
- W4225651337 cites W2086395880 @default.
- W4225651337 cites W2093475321 @default.
- W4225651337 cites W2133452478 @default.
- W4225651337 cites W2150983223 @default.
- W4225651337 cites W2152231616 @default.
- W4225651337 cites W2160327031 @default.
- W4225651337 cites W2160532008 @default.
- W4225651337 cites W2170525757 @default.
- W4225651337 cites W2211778065 @default.
- W4225651337 cites W2247987575 @default.
- W4225651337 cites W2277650996 @default.
- W4225651337 cites W2293013290 @default.
- W4225651337 cites W2319512290 @default.
- W4225651337 cites W2325093831 @default.
- W4225651337 cites W2520805323 @default.
- W4225651337 cites W2548778911 @default.
- W4225651337 cites W2767966692 @default.
- W4225651337 cites W2789800623 @default.
- W4225651337 cites W2796648167 @default.
- W4225651337 cites W2809005786 @default.
- W4225651337 cites W2963972311 @default.
- W4225651337 cites W2972894510 @default.
- W4225651337 cites W3022889499 @default.
- W4225651337 cites W3065291518 @default.
- W4225651337 cites W3103723131 @default.
- W4225651337 cites W3103905941 @default.
- W4225651337 cites W3114381428 @default.
- W4225651337 cites W4200058913 @default.
- W4225651337 cites W4226419890 @default.
- W4225651337 doi "https://doi.org/10.7498/aps.71.20220425" @default.
- W4225651337 hasPublicationYear "2022" @default.
- W4225651337 type Work @default.
- W4225651337 citedByCount "3" @default.
- W4225651337 countsByYear W42256513372022 @default.
- W4225651337 countsByYear W42256513372023 @default.
- W4225651337 crossrefType "journal-article" @default.
- W4225651337 hasAuthorship W4225651337A5019173107 @default.
- W4225651337 hasAuthorship W4225651337A5036069811 @default.
- W4225651337 hasAuthorship W4225651337A5077265619 @default.
- W4225651337 hasBestOaLocation W42256513371 @default.
- W4225651337 hasConcept C111996192 @default.
- W4225651337 hasConcept C121040770 @default.
- W4225651337 hasConcept C121332964 @default.
- W4225651337 hasConcept C15706264 @default.
- W4225651337 hasConcept C166689943 @default.
- W4225651337 hasConcept C180214583 @default.
- W4225651337 hasConcept C190463098 @default.
- W4225651337 hasConcept C190474826 @default.
- W4225651337 hasConcept C22984246 @default.
- W4225651337 hasConcept C23576306 @default.
- W4225651337 hasConcept C2780009758 @default.
- W4225651337 hasConcept C41008148 @default.