Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225662019> ?p ?o ?g. }
- W4225662019 endingPage "2254" @default.
- W4225662019 startingPage "2237" @default.
- W4225662019 abstract "Abstract. Aerosol particles form in the atmosphere via the clustering of certain atmospheric vapors. After growing into larger particles by the condensation of low-volatility gases, they can affect the Earth's climate by scattering light and acting as cloud condensation nuclei (CCN). Observations of low-volatility aerosol precursor gases have been reported around the world, but longer-term measurement series and any Arctic data sets showing seasonal variation are close to nonexistent. Here, we present ∼7 months of aerosol precursor gas measurements performed with a nitrate-based chemical ionization atmospheric pressure interface time-of-flight (CI-APi-TOF) mass spectrometer. We deployed our measurements ∼150 km north of the Arctic Circle at the SMEAR I (Station for Measuring Ecosystem–Atmosphere Relations) continental Finnish subarctic field station, located in the Värriö strict nature reserve. We report concentration measurements of the most common compounds related to new particle formation (NPF): sulfuric acid (SA), methane sulfonic acid (MSA), iodic acid (IA) and the total concentration of highly oxygenated organic molecules (HOMs). At this remote measurement site, SA originates from both anthropogenic and biological sources and has a clear diurnal cycle but no significant seasonal variation. MSA shows a more distinct seasonal cycle, with concentrations peaking in the summer. Of the measured compounds, IA concentrations are the most stable throughout the measurement period, except in April during which time the concentration of IA is significantly higher than during the rest of the year. Otherwise, IA has almost identical daily maximum concentrations in spring, summer and autumn, and on NPF event or non-event days. HOMs are abundant during the summer months and low in the autumn months. Due to their low autumn concentrations and high correlation with ambient air temperature, we suggest that most HOMs are products of biogenic emissions, most probably monoterpene oxidation products. NPF events at SMEAR I happen under relatively low-temperature (1–8 ∘C) conditions, with a fast temperature rise in the early morning hours as well as lower and decreasing relative humidity (RH, 55 % vs. 80 %) during NPF days compared with non-event days. NPF days have clearly higher global irradiance values (∼450 m−2 vs. ∼200 m−2) and about 10 ppbv higher ozone concentrations than non-event days. During NPF days, we have, on average, higher SA concentrations, peaking at noon; higher MSA concentrations in the afternoon; and slightly higher IA concentration than during non-event days. In summary, these are the first long-term measurements of aerosol-forming vapors from SMEAR I in the subarctic region, and the results of this work will help develop an understanding of atmospheric chemical processes and aerosol formation in the rapidly changing Arctic." @default.
- W4225662019 created "2022-05-05" @default.
- W4225662019 creator A5000471665 @default.
- W4225662019 creator A5018027775 @default.
- W4225662019 creator A5019559780 @default.
- W4225662019 creator A5028705265 @default.
- W4225662019 creator A5043850385 @default.
- W4225662019 creator A5049530714 @default.
- W4225662019 creator A5049775246 @default.
- W4225662019 creator A5063948083 @default.
- W4225662019 creator A5070326299 @default.
- W4225662019 creator A5078601915 @default.
- W4225662019 date "2022-02-18" @default.
- W4225662019 modified "2023-10-15" @default.
- W4225662019 title "Measurement report: Long-term measurements of aerosol precursor concentrations in the Finnish subarctic boreal forest" @default.
- W4225662019 cites W1859062302 @default.
- W4225662019 cites W1873647050 @default.
- W4225662019 cites W1982254235 @default.
- W4225662019 cites W1982464608 @default.
- W4225662019 cites W1988320100 @default.
- W4225662019 cites W1995109133 @default.
- W4225662019 cites W1997004877 @default.
- W4225662019 cites W1997272876 @default.
- W4225662019 cites W2000908471 @default.
- W4225662019 cites W2002039008 @default.
- W4225662019 cites W2006427310 @default.
- W4225662019 cites W2018735695 @default.
- W4225662019 cites W2019563243 @default.
- W4225662019 cites W2019926333 @default.
- W4225662019 cites W2023024638 @default.
- W4225662019 cites W2025509954 @default.
- W4225662019 cites W2029405051 @default.
- W4225662019 cites W2029537850 @default.
- W4225662019 cites W2045617521 @default.
- W4225662019 cites W2049784649 @default.
- W4225662019 cites W2055195045 @default.
- W4225662019 cites W2060433375 @default.
- W4225662019 cites W2071491360 @default.
- W4225662019 cites W2074627137 @default.
- W4225662019 cites W2085890497 @default.
- W4225662019 cites W2086888682 @default.
- W4225662019 cites W2088426320 @default.
- W4225662019 cites W2100805591 @default.
- W4225662019 cites W2101107514 @default.
- W4225662019 cites W2106999449 @default.
- W4225662019 cites W2108288768 @default.
- W4225662019 cites W2108582364 @default.
- W4225662019 cites W2109940975 @default.
- W4225662019 cites W2116795237 @default.
- W4225662019 cites W2117706320 @default.
- W4225662019 cites W2120532631 @default.
- W4225662019 cites W2128065887 @default.
- W4225662019 cites W2142173974 @default.
- W4225662019 cites W2142936992 @default.
- W4225662019 cites W2153908710 @default.
- W4225662019 cites W2156633761 @default.
- W4225662019 cites W2166444758 @default.
- W4225662019 cites W2167308833 @default.
- W4225662019 cites W2168053828 @default.
- W4225662019 cites W2173251738 @default.
- W4225662019 cites W2315074291 @default.
- W4225662019 cites W2331041989 @default.
- W4225662019 cites W2385630391 @default.
- W4225662019 cites W2402503711 @default.
- W4225662019 cites W2507780804 @default.
- W4225662019 cites W2509758331 @default.
- W4225662019 cites W2559481487 @default.
- W4225662019 cites W2604774493 @default.
- W4225662019 cites W2751280389 @default.
- W4225662019 cites W2771034682 @default.
- W4225662019 cites W2789915750 @default.
- W4225662019 cites W2801866690 @default.
- W4225662019 cites W2802878632 @default.
- W4225662019 cites W2894491513 @default.
- W4225662019 cites W2902694464 @default.
- W4225662019 cites W2903921653 @default.
- W4225662019 cites W2904912335 @default.
- W4225662019 cites W2907880271 @default.
- W4225662019 cites W2952577878 @default.
- W4225662019 cites W3000902694 @default.
- W4225662019 cites W3034359124 @default.
- W4225662019 cites W3042254404 @default.
- W4225662019 cites W3044422451 @default.
- W4225662019 cites W3091658583 @default.
- W4225662019 cites W3116662980 @default.
- W4225662019 cites W3125090955 @default.
- W4225662019 cites W3126504940 @default.
- W4225662019 cites W3126964966 @default.
- W4225662019 cites W3127520960 @default.
- W4225662019 cites W3200780311 @default.
- W4225662019 cites W4230911539 @default.
- W4225662019 cites W561063729 @default.
- W4225662019 doi "https://doi.org/10.5194/acp-22-2237-2022" @default.
- W4225662019 hasPublicationYear "2022" @default.
- W4225662019 type Work @default.
- W4225662019 citedByCount "3" @default.
- W4225662019 countsByYear W42256620192022 @default.
- W4225662019 countsByYear W42256620192023 @default.