Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225663048> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4225663048 abstract "Quantum Computing (QC) has gained immense popularity as a potential solution to deal with the ever-increasing size of data and associated challenges leveraging the concept of quantum random access memory (QRAM). QC promises quadratic or exponential increases in computational time with quantum parallelism and thus offer a huge leap forward in the computation of Machine Learning algorithms. This paper analyzes speed up performance of QC when applied to machine learning algorithms, known as Quantum Machine Learning (QML). We applied QML methods such as Quantum Support Vector Machine (QSVM), and Quantum Neural Network (QNN) to detect Software Supply Chain (SSC) attacks. Due to the access limitations of real quantum computers, the QML methods were implemented on open-source quantum simulators such as IBM Qiskit and TensorFlow Quantum. We evaluated the performance of QML in terms of processing speed and accuracy and finally, compared with its classical counterparts. Interestingly, the experimental results differ to the speed up promises of QC by demonstrating higher computational time and lower accuracy in comparison to the classical approaches for SSC attacks." @default.
- W4225663048 created "2022-05-05" @default.
- W4225663048 creator A5007582133 @default.
- W4225663048 creator A5036404517 @default.
- W4225663048 creator A5052820694 @default.
- W4225663048 creator A5053766392 @default.
- W4225663048 creator A5059488266 @default.
- W4225663048 creator A5067154597 @default.
- W4225663048 creator A5069063267 @default.
- W4225663048 creator A5075510321 @default.
- W4225663048 creator A5080676206 @default.
- W4225663048 creator A5083502477 @default.
- W4225663048 creator A5087503993 @default.
- W4225663048 date "2022-04-04" @default.
- W4225663048 modified "2023-09-26" @default.
- W4225663048 title "Quantum Machine Learning for Software Supply Chain Attacks: How Far Can We Go?" @default.
- W4225663048 doi "https://doi.org/10.48550/arxiv.2204.02784" @default.
- W4225663048 hasPublicationYear "2022" @default.
- W4225663048 type Work @default.
- W4225663048 citedByCount "0" @default.
- W4225663048 crossrefType "posted-content" @default.
- W4225663048 hasAuthorship W4225663048A5007582133 @default.
- W4225663048 hasAuthorship W4225663048A5036404517 @default.
- W4225663048 hasAuthorship W4225663048A5052820694 @default.
- W4225663048 hasAuthorship W4225663048A5053766392 @default.
- W4225663048 hasAuthorship W4225663048A5059488266 @default.
- W4225663048 hasAuthorship W4225663048A5067154597 @default.
- W4225663048 hasAuthorship W4225663048A5069063267 @default.
- W4225663048 hasAuthorship W4225663048A5075510321 @default.
- W4225663048 hasAuthorship W4225663048A5080676206 @default.
- W4225663048 hasAuthorship W4225663048A5083502477 @default.
- W4225663048 hasAuthorship W4225663048A5087503993 @default.
- W4225663048 hasBestOaLocation W42256630481 @default.
- W4225663048 hasConcept C113775141 @default.
- W4225663048 hasConcept C11413529 @default.
- W4225663048 hasConcept C119857082 @default.
- W4225663048 hasConcept C121332964 @default.
- W4225663048 hasConcept C137019171 @default.
- W4225663048 hasConcept C154945302 @default.
- W4225663048 hasConcept C171250308 @default.
- W4225663048 hasConcept C192562407 @default.
- W4225663048 hasConcept C199360897 @default.
- W4225663048 hasConcept C2777904410 @default.
- W4225663048 hasConcept C2779094486 @default.
- W4225663048 hasConcept C41008148 @default.
- W4225663048 hasConcept C50644808 @default.
- W4225663048 hasConcept C58053490 @default.
- W4225663048 hasConcept C62520636 @default.
- W4225663048 hasConcept C70388272 @default.
- W4225663048 hasConcept C80444323 @default.
- W4225663048 hasConcept C84114770 @default.
- W4225663048 hasConceptScore W4225663048C113775141 @default.
- W4225663048 hasConceptScore W4225663048C11413529 @default.
- W4225663048 hasConceptScore W4225663048C119857082 @default.
- W4225663048 hasConceptScore W4225663048C121332964 @default.
- W4225663048 hasConceptScore W4225663048C137019171 @default.
- W4225663048 hasConceptScore W4225663048C154945302 @default.
- W4225663048 hasConceptScore W4225663048C171250308 @default.
- W4225663048 hasConceptScore W4225663048C192562407 @default.
- W4225663048 hasConceptScore W4225663048C199360897 @default.
- W4225663048 hasConceptScore W4225663048C2777904410 @default.
- W4225663048 hasConceptScore W4225663048C2779094486 @default.
- W4225663048 hasConceptScore W4225663048C41008148 @default.
- W4225663048 hasConceptScore W4225663048C50644808 @default.
- W4225663048 hasConceptScore W4225663048C58053490 @default.
- W4225663048 hasConceptScore W4225663048C62520636 @default.
- W4225663048 hasConceptScore W4225663048C70388272 @default.
- W4225663048 hasConceptScore W4225663048C80444323 @default.
- W4225663048 hasConceptScore W4225663048C84114770 @default.
- W4225663048 hasLocation W42256630481 @default.
- W4225663048 hasOpenAccess W4225663048 @default.
- W4225663048 hasPrimaryLocation W42256630481 @default.
- W4225663048 hasRelatedWork W3094536227 @default.
- W4225663048 hasRelatedWork W3111315577 @default.
- W4225663048 hasRelatedWork W3147935532 @default.
- W4225663048 hasRelatedWork W3154003520 @default.
- W4225663048 hasRelatedWork W3174352874 @default.
- W4225663048 hasRelatedWork W3197173602 @default.
- W4225663048 hasRelatedWork W4223544695 @default.
- W4225663048 hasRelatedWork W4224903505 @default.
- W4225663048 hasRelatedWork W4225663048 @default.
- W4225663048 hasRelatedWork W4301379430 @default.
- W4225663048 isParatext "false" @default.
- W4225663048 isRetracted "false" @default.
- W4225663048 workType "article" @default.