Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225663906> ?p ?o ?g. }
- W4225663906 endingPage "e1009293" @default.
- W4225663906 startingPage "e1009293" @default.
- W4225663906 abstract "Collective, coordinated cellular motions underpin key processes in all multicellular organisms, yet it has been difficult to simultaneously express the ‘rules’ behind these motions in clear, interpretable forms that effectively capture high-dimensional cell-cell interaction dynamics in a manner that is intuitive to the researcher. Here we apply deep attention networks to analyze several canonical living tissues systems and present the underlying collective migration rules for each tissue type using only cell migration trajectory data. We use these networks to learn the behaviors of key tissue types with distinct collective behaviors—epithelial, endothelial, and metastatic breast cancer cells—and show how the results complement traditional biophysical approaches. In particular, we present attention maps indicating the relative influence of neighboring cells to the learned turning decisions of a ‘focal cell’–the primary cell of interest in a collective setting. Colloquially, we refer to this learned relative influence as ‘attention’, as it serves as a proxy for the physical parameters modifying the focal cell’s future motion as a function of each neighbor cell. These attention networks reveal distinct patterns of influence and attention unique to each model tissue. Endothelial cells exhibit tightly focused attention on their immediate forward-most neighbors, while cells in more expansile epithelial tissues are more broadly influenced by neighbors in a relatively large forward sector. Attention maps of ensembles of more mesenchymal, metastatic cells reveal completely symmetric attention patterns, indicating the lack of any particular coordination or direction of interest. Moreover, we show how attention networks are capable of detecting and learning how these rules change based on biophysical context, such as location within the tissue and cellular crowding. That these results require only cellular trajectories and no modeling assumptions highlights the potential of attention networks for providing further biological insights into complex cellular systems." @default.
- W4225663906 created "2022-05-05" @default.
- W4225663906 creator A5002838127 @default.
- W4225663906 creator A5032273247 @default.
- W4225663906 creator A5069698788 @default.
- W4225663906 creator A5082506991 @default.
- W4225663906 date "2022-04-27" @default.
- W4225663906 modified "2023-10-14" @default.
- W4225663906 title "Learning the rules of collective cell migration using deep attention networks" @default.
- W4225663906 cites W1493072136 @default.
- W4225663906 cites W1626095167 @default.
- W4225663906 cites W1880645299 @default.
- W4225663906 cites W1974655589 @default.
- W4225663906 cites W1976719807 @default.
- W4225663906 cites W1988250005 @default.
- W4225663906 cites W2012376126 @default.
- W4225663906 cites W2015410655 @default.
- W4225663906 cites W2016272735 @default.
- W4225663906 cites W2044247492 @default.
- W4225663906 cites W2062835218 @default.
- W4225663906 cites W2090328071 @default.
- W4225663906 cites W2091389429 @default.
- W4225663906 cites W2094098398 @default.
- W4225663906 cites W2096571281 @default.
- W4225663906 cites W2112164016 @default.
- W4225663906 cites W2122857604 @default.
- W4225663906 cites W2126306109 @default.
- W4225663906 cites W2136861779 @default.
- W4225663906 cites W2143001044 @default.
- W4225663906 cites W2145013849 @default.
- W4225663906 cites W2158706178 @default.
- W4225663906 cites W2160332754 @default.
- W4225663906 cites W2167279371 @default.
- W4225663906 cites W2260142329 @default.
- W4225663906 cites W2288405187 @default.
- W4225663906 cites W2488962029 @default.
- W4225663906 cites W2529052661 @default.
- W4225663906 cites W2548342201 @default.
- W4225663906 cites W2550568864 @default.
- W4225663906 cites W2560606601 @default.
- W4225663906 cites W2626512869 @default.
- W4225663906 cites W2743200826 @default.
- W4225663906 cites W2751625431 @default.
- W4225663906 cites W2767369251 @default.
- W4225663906 cites W2768065449 @default.
- W4225663906 cites W2793541251 @default.
- W4225663906 cites W2900936384 @default.
- W4225663906 cites W2910683834 @default.
- W4225663906 cites W2922889920 @default.
- W4225663906 cites W2939737369 @default.
- W4225663906 cites W2945076939 @default.
- W4225663906 cites W2972866190 @default.
- W4225663906 cites W2991505451 @default.
- W4225663906 cites W3006249533 @default.
- W4225663906 cites W3012087433 @default.
- W4225663906 cites W3034141515 @default.
- W4225663906 cites W3044514155 @default.
- W4225663906 cites W3058387803 @default.
- W4225663906 cites W3115649580 @default.
- W4225663906 cites W3188709556 @default.
- W4225663906 doi "https://doi.org/10.1371/journal.pcbi.1009293" @default.
- W4225663906 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35476698" @default.
- W4225663906 hasPublicationYear "2022" @default.
- W4225663906 type Work @default.
- W4225663906 citedByCount "5" @default.
- W4225663906 countsByYear W42256639062012 @default.
- W4225663906 countsByYear W42256639062022 @default.
- W4225663906 countsByYear W42256639062023 @default.
- W4225663906 crossrefType "journal-article" @default.
- W4225663906 hasAuthorship W4225663906A5002838127 @default.
- W4225663906 hasAuthorship W4225663906A5032273247 @default.
- W4225663906 hasAuthorship W4225663906A5069698788 @default.
- W4225663906 hasAuthorship W4225663906A5082506991 @default.
- W4225663906 hasBestOaLocation W42256639061 @default.
- W4225663906 hasConcept C100339178 @default.
- W4225663906 hasConcept C137738243 @default.
- W4225663906 hasConcept C144024400 @default.
- W4225663906 hasConcept C1491633281 @default.
- W4225663906 hasConcept C154945302 @default.
- W4225663906 hasConcept C169760540 @default.
- W4225663906 hasConcept C189014844 @default.
- W4225663906 hasConcept C19165224 @default.
- W4225663906 hasConcept C41008148 @default.
- W4225663906 hasConcept C54355233 @default.
- W4225663906 hasConcept C74318829 @default.
- W4225663906 hasConcept C86803240 @default.
- W4225663906 hasConceptScore W4225663906C100339178 @default.
- W4225663906 hasConceptScore W4225663906C137738243 @default.
- W4225663906 hasConceptScore W4225663906C144024400 @default.
- W4225663906 hasConceptScore W4225663906C1491633281 @default.
- W4225663906 hasConceptScore W4225663906C154945302 @default.
- W4225663906 hasConceptScore W4225663906C169760540 @default.
- W4225663906 hasConceptScore W4225663906C189014844 @default.
- W4225663906 hasConceptScore W4225663906C19165224 @default.
- W4225663906 hasConceptScore W4225663906C41008148 @default.
- W4225663906 hasConceptScore W4225663906C54355233 @default.
- W4225663906 hasConceptScore W4225663906C74318829 @default.
- W4225663906 hasConceptScore W4225663906C86803240 @default.