Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225665703> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4225665703 abstract "Representing data by means of graph structures identifies one of the most valid approach to extract information in several data analysis applications. This is especially true when multimodal datasets are investigated, as records collected by means of diverse sensing strategies are taken into account and explored. Nevertheless, classic graph signal processing is based on a model for information propagation that is configured according to heat diffusion mechanism. This system provides several constraints and assumptions on the data properties that might be not valid for multimodal data analysis, especially when large scale datasets collected from heterogeneous sources are considered, so that the accuracy and robustness of the outcomes might be severely jeopardized. In this paper, we introduce a novel model for graph definition based on fluid diffusion. The proposed approach improves the ability of graph-based data analysis to take into account several issues of modern data analysis in operational scenarios, so to provide a platform for precise, versatile, and efficient understanding of the phenomena underlying the records under exam, and to fully exploit the potential provided by the diversity of the records in obtaining a thorough characterization of the data and their significance. In this work, we focus our attention to using this fluid diffusion model to drive a community detection scheme, i.e., to divide multimodal datasets into many groups according to similarity among nodes in an unsupervised fashion. Experimental results achieved by testing real multimodal datasets in diverse application scenarios show that our method is able to strongly outperform state-of-the-art schemes for community detection in multimodal data analysis." @default.
- W4225665703 created "2022-05-05" @default.
- W4225665703 creator A5045384249 @default.
- W4225665703 creator A5055562421 @default.
- W4225665703 creator A5083495404 @default.
- W4225665703 date "2021-12-07" @default.
- W4225665703 modified "2023-10-16" @default.
- W4225665703 title "A graph representation based on fluid diffusion model for data analysis: theoretical aspects and enhanced community detection" @default.
- W4225665703 doi "https://doi.org/10.48550/arxiv.2112.04388" @default.
- W4225665703 hasPublicationYear "2021" @default.
- W4225665703 type Work @default.
- W4225665703 citedByCount "0" @default.
- W4225665703 crossrefType "posted-content" @default.
- W4225665703 hasAuthorship W4225665703A5045384249 @default.
- W4225665703 hasAuthorship W4225665703A5055562421 @default.
- W4225665703 hasAuthorship W4225665703A5083495404 @default.
- W4225665703 hasBestOaLocation W42256657031 @default.
- W4225665703 hasConcept C104317684 @default.
- W4225665703 hasConcept C119857082 @default.
- W4225665703 hasConcept C124101348 @default.
- W4225665703 hasConcept C132525143 @default.
- W4225665703 hasConcept C154945302 @default.
- W4225665703 hasConcept C165696696 @default.
- W4225665703 hasConcept C17744445 @default.
- W4225665703 hasConcept C185592680 @default.
- W4225665703 hasConcept C199539241 @default.
- W4225665703 hasConcept C2776359362 @default.
- W4225665703 hasConcept C38652104 @default.
- W4225665703 hasConcept C41008148 @default.
- W4225665703 hasConcept C55493867 @default.
- W4225665703 hasConcept C63479239 @default.
- W4225665703 hasConcept C80444323 @default.
- W4225665703 hasConcept C94625758 @default.
- W4225665703 hasConceptScore W4225665703C104317684 @default.
- W4225665703 hasConceptScore W4225665703C119857082 @default.
- W4225665703 hasConceptScore W4225665703C124101348 @default.
- W4225665703 hasConceptScore W4225665703C132525143 @default.
- W4225665703 hasConceptScore W4225665703C154945302 @default.
- W4225665703 hasConceptScore W4225665703C165696696 @default.
- W4225665703 hasConceptScore W4225665703C17744445 @default.
- W4225665703 hasConceptScore W4225665703C185592680 @default.
- W4225665703 hasConceptScore W4225665703C199539241 @default.
- W4225665703 hasConceptScore W4225665703C2776359362 @default.
- W4225665703 hasConceptScore W4225665703C38652104 @default.
- W4225665703 hasConceptScore W4225665703C41008148 @default.
- W4225665703 hasConceptScore W4225665703C55493867 @default.
- W4225665703 hasConceptScore W4225665703C63479239 @default.
- W4225665703 hasConceptScore W4225665703C80444323 @default.
- W4225665703 hasConceptScore W4225665703C94625758 @default.
- W4225665703 hasLocation W42256657031 @default.
- W4225665703 hasOpenAccess W4225665703 @default.
- W4225665703 hasPrimaryLocation W42256657031 @default.
- W4225665703 hasRelatedWork W1507793640 @default.
- W4225665703 hasRelatedWork W1826416243 @default.
- W4225665703 hasRelatedWork W2331043530 @default.
- W4225665703 hasRelatedWork W2374820792 @default.
- W4225665703 hasRelatedWork W2952419077 @default.
- W4225665703 hasRelatedWork W2961085424 @default.
- W4225665703 hasRelatedWork W2964604098 @default.
- W4225665703 hasRelatedWork W2997512100 @default.
- W4225665703 hasRelatedWork W4297899248 @default.
- W4225665703 hasRelatedWork W4379255972 @default.
- W4225665703 isParatext "false" @default.
- W4225665703 isRetracted "false" @default.
- W4225665703 workType "article" @default.