Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225670292> ?p ?o ?g. }
- W4225670292 endingPage "30273" @default.
- W4225670292 startingPage "30258" @default.
- W4225670292 abstract "With the development of computer technology and expanding environmental issues, machine learning has received more and more attention in the field of weather forecasting. Global Navigation Satellite System-Radio Occultation(GNSS-RO) technology is a kind of remote sensing technology. This investigation proposes an alternative to numerical weather forecasting model. The new method is based on machine learning utilizing GNSS-RO data to forecast the wind field in the Beijing-Tianjin-Hebei region of China. The dataset including temperature, humidity, pressure, wind speed and direction was obtained by numerical calculation in terms of historical monitoring data in Beijing-Tianjin-Hebei region. Then the models of wind fields forecasting based on machine learning were established with different neural network including Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN) and Deep Neural Networks (DNN). The prediction performance of different models was analyzed. The results demonstrate that LSTM and CNN have better performance on predicting the wind field than Deep Neural Networks. The wind speed error is about 1.4m/s, and the wind direction error is about 30°. Moreover, the time required for neural network to predict a new sample is about 1 second, which is only 0.2% of the prediction time compared with numerical model. Finally, the machine learning model can be used to predict the wind field effectively, with GNSS-RO data as the input in application. This paper pro-vides a new method in sight to use machine learning to forecast the regional wind field utilizing GNSS-RO data." @default.
- W4225670292 created "2022-05-05" @default.
- W4225670292 creator A5000432967 @default.
- W4225670292 creator A5003191730 @default.
- W4225670292 creator A5006413981 @default.
- W4225670292 creator A5018244605 @default.
- W4225670292 creator A5058085145 @default.
- W4225670292 creator A5082149363 @default.
- W4225670292 date "2022-01-01" @default.
- W4225670292 modified "2023-10-18" @default.
- W4225670292 title "A Machine Learning-Based Method for Wind Fields Forecasting Utilizing GNSS Radio Occultation Data" @default.
- W4225670292 cites W1967475963 @default.
- W4225670292 cites W1967604662 @default.
- W4225670292 cites W1972184850 @default.
- W4225670292 cites W1975690200 @default.
- W4225670292 cites W1976913624 @default.
- W4225670292 cites W1998006764 @default.
- W4225670292 cites W1999591096 @default.
- W4225670292 cites W2028892603 @default.
- W4225670292 cites W2042142126 @default.
- W4225670292 cites W2047637566 @default.
- W4225670292 cites W2048347049 @default.
- W4225670292 cites W2054847622 @default.
- W4225670292 cites W2071107617 @default.
- W4225670292 cites W2105796585 @default.
- W4225670292 cites W2105897644 @default.
- W4225670292 cites W2120653142 @default.
- W4225670292 cites W2136848157 @default.
- W4225670292 cites W2146383832 @default.
- W4225670292 cites W2146611287 @default.
- W4225670292 cites W2275865104 @default.
- W4225670292 cites W2316705531 @default.
- W4225670292 cites W2498005325 @default.
- W4225670292 cites W2623403799 @default.
- W4225670292 cites W2761529345 @default.
- W4225670292 cites W2788876838 @default.
- W4225670292 cites W2804405617 @default.
- W4225670292 cites W2896345488 @default.
- W4225670292 cites W2956793645 @default.
- W4225670292 cites W2972383380 @default.
- W4225670292 cites W2973827652 @default.
- W4225670292 cites W3008371409 @default.
- W4225670292 cites W3008711387 @default.
- W4225670292 cites W3016252900 @default.
- W4225670292 cites W3030538466 @default.
- W4225670292 cites W3034842560 @default.
- W4225670292 cites W3048476988 @default.
- W4225670292 cites W3048939896 @default.
- W4225670292 cites W3097305716 @default.
- W4225670292 cites W3099037876 @default.
- W4225670292 cites W3129094285 @default.
- W4225670292 cites W3150017935 @default.
- W4225670292 cites W3153451455 @default.
- W4225670292 cites W3155541611 @default.
- W4225670292 cites W3158509962 @default.
- W4225670292 cites W3164981903 @default.
- W4225670292 cites W3165528943 @default.
- W4225670292 cites W3166909593 @default.
- W4225670292 cites W3168196005 @default.
- W4225670292 cites W3178584773 @default.
- W4225670292 cites W3180435952 @default.
- W4225670292 cites W3185736335 @default.
- W4225670292 cites W3185895012 @default.
- W4225670292 cites W4231157911 @default.
- W4225670292 doi "https://doi.org/10.1109/access.2022.3159231" @default.
- W4225670292 hasPublicationYear "2022" @default.
- W4225670292 type Work @default.
- W4225670292 citedByCount "2" @default.
- W4225670292 countsByYear W42256702922022 @default.
- W4225670292 countsByYear W42256702922023 @default.
- W4225670292 crossrefType "journal-article" @default.
- W4225670292 hasAuthorship W4225670292A5000432967 @default.
- W4225670292 hasAuthorship W4225670292A5003191730 @default.
- W4225670292 hasAuthorship W4225670292A5006413981 @default.
- W4225670292 hasAuthorship W4225670292A5018244605 @default.
- W4225670292 hasAuthorship W4225670292A5058085145 @default.
- W4225670292 hasAuthorship W4225670292A5082149363 @default.
- W4225670292 hasBestOaLocation W42256702921 @default.
- W4225670292 hasConcept C107775477 @default.
- W4225670292 hasConcept C108583219 @default.
- W4225670292 hasConcept C119857082 @default.
- W4225670292 hasConcept C14279187 @default.
- W4225670292 hasConcept C147947694 @default.
- W4225670292 hasConcept C153294291 @default.
- W4225670292 hasConcept C154945302 @default.
- W4225670292 hasConcept C161067210 @default.
- W4225670292 hasConcept C166957645 @default.
- W4225670292 hasConcept C191935318 @default.
- W4225670292 hasConcept C202444582 @default.
- W4225670292 hasConcept C205649164 @default.
- W4225670292 hasConcept C21001229 @default.
- W4225670292 hasConcept C2778027091 @default.
- W4225670292 hasConcept C2778304055 @default.
- W4225670292 hasConcept C33923547 @default.
- W4225670292 hasConcept C41008148 @default.
- W4225670292 hasConcept C50644808 @default.
- W4225670292 hasConcept C60229501 @default.
- W4225670292 hasConcept C76155785 @default.