Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225673889> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4225673889 abstract "Automatically locating vulnerable statements in source code is crucial to assure software security and alleviate developers' debugging efforts. This becomes even more important in today's software ecosystem, where vulnerable code can flow easily and unwittingly within and across software repositories like GitHub. Across such millions of lines of code, traditional static and dynamic approaches struggle to scale. Although existing machine-learning-based approaches look promising in such a setting, most work detects vulnerable code at a higher granularity – at the method or file level. Thus, developers still need to inspect a significant amount of code to locate the vulnerable statement(s) that need to be fixed. This paper presents Velvet, a novel ensemble learning approach to locate vulnerable statements. Our model combines graph-based and sequence-based neural networks to successfully capture the local and global context of a program graph and effectively understand code semantics and vulnerable patterns. To study Velvet's effectiveness, we use an off-the-shelf synthetic dataset and a recently published real-world dataset. In the static analysis setting, where vulnerable functions are not detected in advance, Velvet achieves 4.5× better performance than the baseline static analyzers on the real-world data. For the isolated vulnerability localization task, where we assume the vulnerability of a function is known while the specific vulnerable statement is unknown, we compare Velvet with several neural networks that also attend to local and global context of code. Velvet achieves 99.6% and 43.6% top-1 accuracy over synthetic data and real-world data, respectively, outperforming the baseline deep learning models by 5.3-29.0%." @default.
- W4225673889 created "2022-05-05" @default.
- W4225673889 creator A5034331643 @default.
- W4225673889 creator A5039824895 @default.
- W4225673889 creator A5064527453 @default.
- W4225673889 creator A5064541855 @default.
- W4225673889 creator A5076968229 @default.
- W4225673889 creator A5090171418 @default.
- W4225673889 creator A5090845035 @default.
- W4225673889 date "2022-03-01" @default.
- W4225673889 modified "2023-09-27" @default.
- W4225673889 title "VELVET: a noVel Ensemble Learning approach to automatically locate VulnErable sTatements" @default.
- W4225673889 doi "https://doi.org/10.1109/saner53432.2022.00114" @default.
- W4225673889 hasPublicationYear "2022" @default.
- W4225673889 type Work @default.
- W4225673889 citedByCount "6" @default.
- W4225673889 countsByYear W42256738892022 @default.
- W4225673889 countsByYear W42256738892023 @default.
- W4225673889 crossrefType "proceedings-article" @default.
- W4225673889 hasAuthorship W4225673889A5034331643 @default.
- W4225673889 hasAuthorship W4225673889A5039824895 @default.
- W4225673889 hasAuthorship W4225673889A5064527453 @default.
- W4225673889 hasAuthorship W4225673889A5064541855 @default.
- W4225673889 hasAuthorship W4225673889A5076968229 @default.
- W4225673889 hasAuthorship W4225673889A5090171418 @default.
- W4225673889 hasAuthorship W4225673889A5090845035 @default.
- W4225673889 hasBestOaLocation W42256738892 @default.
- W4225673889 hasConcept C1009929 @default.
- W4225673889 hasConcept C119857082 @default.
- W4225673889 hasConcept C132525143 @default.
- W4225673889 hasConcept C151730666 @default.
- W4225673889 hasConcept C154945302 @default.
- W4225673889 hasConcept C168065819 @default.
- W4225673889 hasConcept C177264268 @default.
- W4225673889 hasConcept C199360897 @default.
- W4225673889 hasConcept C2776760102 @default.
- W4225673889 hasConcept C2777904410 @default.
- W4225673889 hasConcept C2779343474 @default.
- W4225673889 hasConcept C38652104 @default.
- W4225673889 hasConcept C41008148 @default.
- W4225673889 hasConcept C80444323 @default.
- W4225673889 hasConcept C86803240 @default.
- W4225673889 hasConceptScore W4225673889C1009929 @default.
- W4225673889 hasConceptScore W4225673889C119857082 @default.
- W4225673889 hasConceptScore W4225673889C132525143 @default.
- W4225673889 hasConceptScore W4225673889C151730666 @default.
- W4225673889 hasConceptScore W4225673889C154945302 @default.
- W4225673889 hasConceptScore W4225673889C168065819 @default.
- W4225673889 hasConceptScore W4225673889C177264268 @default.
- W4225673889 hasConceptScore W4225673889C199360897 @default.
- W4225673889 hasConceptScore W4225673889C2776760102 @default.
- W4225673889 hasConceptScore W4225673889C2777904410 @default.
- W4225673889 hasConceptScore W4225673889C2779343474 @default.
- W4225673889 hasConceptScore W4225673889C38652104 @default.
- W4225673889 hasConceptScore W4225673889C41008148 @default.
- W4225673889 hasConceptScore W4225673889C80444323 @default.
- W4225673889 hasConceptScore W4225673889C86803240 @default.
- W4225673889 hasFunder F4320306076 @default.
- W4225673889 hasFunder F4320307762 @default.
- W4225673889 hasLocation W42256738891 @default.
- W4225673889 hasLocation W42256738892 @default.
- W4225673889 hasOpenAccess W4225673889 @default.
- W4225673889 hasPrimaryLocation W42256738891 @default.
- W4225673889 hasRelatedWork W121904617 @default.
- W4225673889 hasRelatedWork W1656679015 @default.
- W4225673889 hasRelatedWork W201088255 @default.
- W4225673889 hasRelatedWork W2060012464 @default.
- W4225673889 hasRelatedWork W2767663318 @default.
- W4225673889 hasRelatedWork W2973090640 @default.
- W4225673889 hasRelatedWork W3014289436 @default.
- W4225673889 hasRelatedWork W3087882504 @default.
- W4225673889 hasRelatedWork W4212806006 @default.
- W4225673889 hasRelatedWork W4248330917 @default.
- W4225673889 isParatext "false" @default.
- W4225673889 isRetracted "false" @default.
- W4225673889 workType "article" @default.