Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225684920> ?p ?o ?g. }
- W4225684920 endingPage "1133" @default.
- W4225684920 startingPage "1133" @default.
- W4225684920 abstract "Dam safety monitoring is of vital importance, due to the high number of fatalities and large economic damage that a failure might imply. This, along with the evolution of artificial intelligence, has led to machine learning techniques being increasingly applied in this field. Many researchers have successfully trained models to predict dam behavior, but errors vary depending on the method used, meaning that the optimal model is not always the same over time. The main goal of this paper is to improve model precision by combining different models. Our research focuses on the comparison of two successful integration strategies in other areas: Stacking and Blending. The methodology was applied to the prediction of radial movements of an arch-gravity dam and was divided into two parts. First, we compared the usual method of estimating model errors and their hyperparameters, i.e., Random Cross Validation and Blocked Cross Validation. This aspect is relevant not only for the importance of robust estimates, but also because it is the source of the data sets used to train meta-learners. The second and main research topic of this paper was the comparison of combination strategies, for which two different types of tests were performed. The results obtained suggest that Blocked CV outperforms the random approach in robustness and that Stacking provides better predictions than Blending. The generalized linear meta-learners trained by the Stacking strategy achieved higher accuracy than the individual models in most cases." @default.
- W4225684920 created "2022-05-05" @default.
- W4225684920 creator A5018150191 @default.
- W4225684920 creator A5083142990 @default.
- W4225684920 creator A5083532305 @default.
- W4225684920 date "2022-04-01" @default.
- W4225684920 modified "2023-10-14" @default.
- W4225684920 title "Prediction of Concrete Dam Deformation through the Combination of Machine Learning Models" @default.
- W4225684920 cites W1037593585 @default.
- W4225684920 cites W1590893204 @default.
- W4225684920 cites W1981780459 @default.
- W4225684920 cites W1990007134 @default.
- W4225684920 cites W2012211646 @default.
- W4225684920 cites W2023294425 @default.
- W4225684920 cites W2050954500 @default.
- W4225684920 cites W2062981820 @default.
- W4225684920 cites W2102148524 @default.
- W4225684920 cites W2344045557 @default.
- W4225684920 cites W2560136348 @default.
- W4225684920 cites W2604817211 @default.
- W4225684920 cites W2604916266 @default.
- W4225684920 cites W2767681036 @default.
- W4225684920 cites W2778292270 @default.
- W4225684920 cites W2800472443 @default.
- W4225684920 cites W28412257 @default.
- W4225684920 cites W2903306157 @default.
- W4225684920 cites W2981581709 @default.
- W4225684920 cites W3093959849 @default.
- W4225684920 cites W3138886979 @default.
- W4225684920 cites W4248083651 @default.
- W4225684920 doi "https://doi.org/10.3390/w14071133" @default.
- W4225684920 hasPublicationYear "2022" @default.
- W4225684920 type Work @default.
- W4225684920 citedByCount "4" @default.
- W4225684920 countsByYear W42256849202022 @default.
- W4225684920 countsByYear W42256849202023 @default.
- W4225684920 crossrefType "journal-article" @default.
- W4225684920 hasAuthorship W4225684920A5018150191 @default.
- W4225684920 hasAuthorship W4225684920A5083142990 @default.
- W4225684920 hasAuthorship W4225684920A5083532305 @default.
- W4225684920 hasBestOaLocation W42256849201 @default.
- W4225684920 hasConcept C104317684 @default.
- W4225684920 hasConcept C11312509 @default.
- W4225684920 hasConcept C119857082 @default.
- W4225684920 hasConcept C121332964 @default.
- W4225684920 hasConcept C127413603 @default.
- W4225684920 hasConcept C135628077 @default.
- W4225684920 hasConcept C154945302 @default.
- W4225684920 hasConcept C185592680 @default.
- W4225684920 hasConcept C202444582 @default.
- W4225684920 hasConcept C27181475 @default.
- W4225684920 hasConcept C2776423418 @default.
- W4225684920 hasConcept C2779318173 @default.
- W4225684920 hasConcept C33347731 @default.
- W4225684920 hasConcept C33923547 @default.
- W4225684920 hasConcept C41008148 @default.
- W4225684920 hasConcept C46141821 @default.
- W4225684920 hasConcept C55493867 @default.
- W4225684920 hasConcept C63479239 @default.
- W4225684920 hasConcept C66938386 @default.
- W4225684920 hasConcept C8642999 @default.
- W4225684920 hasConcept C9652623 @default.
- W4225684920 hasConceptScore W4225684920C104317684 @default.
- W4225684920 hasConceptScore W4225684920C11312509 @default.
- W4225684920 hasConceptScore W4225684920C119857082 @default.
- W4225684920 hasConceptScore W4225684920C121332964 @default.
- W4225684920 hasConceptScore W4225684920C127413603 @default.
- W4225684920 hasConceptScore W4225684920C135628077 @default.
- W4225684920 hasConceptScore W4225684920C154945302 @default.
- W4225684920 hasConceptScore W4225684920C185592680 @default.
- W4225684920 hasConceptScore W4225684920C202444582 @default.
- W4225684920 hasConceptScore W4225684920C27181475 @default.
- W4225684920 hasConceptScore W4225684920C2776423418 @default.
- W4225684920 hasConceptScore W4225684920C2779318173 @default.
- W4225684920 hasConceptScore W4225684920C33347731 @default.
- W4225684920 hasConceptScore W4225684920C33923547 @default.
- W4225684920 hasConceptScore W4225684920C41008148 @default.
- W4225684920 hasConceptScore W4225684920C46141821 @default.
- W4225684920 hasConceptScore W4225684920C55493867 @default.
- W4225684920 hasConceptScore W4225684920C63479239 @default.
- W4225684920 hasConceptScore W4225684920C66938386 @default.
- W4225684920 hasConceptScore W4225684920C8642999 @default.
- W4225684920 hasConceptScore W4225684920C9652623 @default.
- W4225684920 hasFunder F4320323943 @default.
- W4225684920 hasIssue "7" @default.
- W4225684920 hasLocation W42256849201 @default.
- W4225684920 hasOpenAccess W4225684920 @default.
- W4225684920 hasPrimaryLocation W42256849201 @default.
- W4225684920 hasRelatedWork W2804162248 @default.
- W4225684920 hasRelatedWork W3014815208 @default.
- W4225684920 hasRelatedWork W3199608561 @default.
- W4225684920 hasRelatedWork W4210794429 @default.
- W4225684920 hasRelatedWork W4223456145 @default.
- W4225684920 hasRelatedWork W4283697347 @default.
- W4225684920 hasRelatedWork W4294564511 @default.
- W4225684920 hasRelatedWork W4295309597 @default.
- W4225684920 hasRelatedWork W4295681619 @default.
- W4225684920 hasRelatedWork W4309113015 @default.