Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225692059> ?p ?o ?g. }
- W4225692059 endingPage "9634" @default.
- W4225692059 startingPage "9621" @default.
- W4225692059 abstract "Aspect-level sentiment classification aims to integrating the context to predict the sentiment polarity of aspect-specific in a text, which has been quite useful and popular, e.g., opinion survey and products’ recommending in e-commerce. Many recent studies exploit a Long Short-Term Memory (LSTM) networks to perform aspect-level sentiment classification, but the limitation of long-term dependencies is not solved well, so that the semantic correlations between each two words of the text are ignored. In addition, traditional classification model adopts SoftMax function based on probability statistics as classifier, but ignores the words’ features in the semantic space. Support Vector Machine (SVM) can fully use the information of characteristics, and it is appropriate to make classification in the high-dimensional space, however, which just considers the maximum distance between different classes and ignores the similarities between different features of the same classes. To address these defects, we propose the two-stage novel architecture named Self Attention Networks and Adaptive SVM (SAN-ASVM) for aspect-level sentiment classification. In the first stage, in order to overcome the long-term dependencies, Multi-Heads Self Attention (MHSA) mechanism is applied to extract the semantic relationships between each two words; furthermore, 1-hop attention mechanism is designed to pay more attention on some important words related to aspect-specific. In the second stage, ASVM is designed to substitute the SoftMax function to perform sentiment classification, which can effectively make multi-classifications in high-dimensional space. Extensive experiments on SemEval2014, SemEval2016 and Twitter datasets are conducted, and compared experiments prove that SAN-ASVM model can obtain better performance." @default.
- W4225692059 created "2022-05-05" @default.
- W4225692059 creator A5029220709 @default.
- W4225692059 creator A5053699035 @default.
- W4225692059 creator A5071821810 @default.
- W4225692059 creator A5082270910 @default.
- W4225692059 creator A5084188467 @default.
- W4225692059 creator A5085317250 @default.
- W4225692059 date "2022-02-21" @default.
- W4225692059 modified "2023-10-13" @default.
- W4225692059 title "Self-Attention Networks and Adaptive Support Vector Machine for aspect-level sentiment classification" @default.
- W4225692059 cites W2107878631 @default.
- W4225692059 cites W2123442489 @default.
- W4225692059 cites W2177287823 @default.
- W4225692059 cites W2194775991 @default.
- W4225692059 cites W2251124635 @default.
- W4225692059 cites W2251648804 @default.
- W4225692059 cites W2252057809 @default.
- W4225692059 cites W2293951576 @default.
- W4225692059 cites W2465978385 @default.
- W4225692059 cites W2514722822 @default.
- W4225692059 cites W2562607067 @default.
- W4225692059 cites W2735244900 @default.
- W4225692059 cites W2757541972 @default.
- W4225692059 cites W2766176045 @default.
- W4225692059 cites W2767210791 @default.
- W4225692059 cites W2788810909 @default.
- W4225692059 cites W2789190634 @default.
- W4225692059 cites W2794259165 @default.
- W4225692059 cites W2800709752 @default.
- W4225692059 cites W2809807853 @default.
- W4225692059 cites W2891778157 @default.
- W4225692059 cites W2894196255 @default.
- W4225692059 cites W2898682373 @default.
- W4225692059 cites W2914767245 @default.
- W4225692059 cites W2914820290 @default.
- W4225692059 cites W2935543933 @default.
- W4225692059 cites W2946545382 @default.
- W4225692059 cites W2962808042 @default.
- W4225692059 cites W2963240575 @default.
- W4225692059 cites W2963355447 @default.
- W4225692059 cites W2963378656 @default.
- W4225692059 cites W2963494756 @default.
- W4225692059 cites W2963909901 @default.
- W4225692059 cites W2964164368 @default.
- W4225692059 cites W2964347220 @default.
- W4225692059 cites W2967124430 @default.
- W4225692059 cites W2969186915 @default.
- W4225692059 cites W2975070089 @default.
- W4225692059 cites W2975284020 @default.
- W4225692059 cites W2982086472 @default.
- W4225692059 cites W2982339493 @default.
- W4225692059 cites W3016055861 @default.
- W4225692059 cites W3027304069 @default.
- W4225692059 cites W3082136454 @default.
- W4225692059 cites W3105174597 @default.
- W4225692059 cites W4205184193 @default.
- W4225692059 doi "https://doi.org/10.1007/s00500-022-06793-7" @default.
- W4225692059 hasPublicationYear "2022" @default.
- W4225692059 type Work @default.
- W4225692059 citedByCount "2" @default.
- W4225692059 countsByYear W42256920592023 @default.
- W4225692059 crossrefType "journal-article" @default.
- W4225692059 hasAuthorship W4225692059A5029220709 @default.
- W4225692059 hasAuthorship W4225692059A5053699035 @default.
- W4225692059 hasAuthorship W4225692059A5071821810 @default.
- W4225692059 hasAuthorship W4225692059A5082270910 @default.
- W4225692059 hasAuthorship W4225692059A5084188467 @default.
- W4225692059 hasAuthorship W4225692059A5085317250 @default.
- W4225692059 hasBestOaLocation W42256920592 @default.
- W4225692059 hasConcept C111919701 @default.
- W4225692059 hasConcept C119857082 @default.
- W4225692059 hasConcept C12267149 @default.
- W4225692059 hasConcept C154945302 @default.
- W4225692059 hasConcept C165696696 @default.
- W4225692059 hasConcept C188441871 @default.
- W4225692059 hasConcept C204321447 @default.
- W4225692059 hasConcept C2778572836 @default.
- W4225692059 hasConcept C38652104 @default.
- W4225692059 hasConcept C41008148 @default.
- W4225692059 hasConcept C50644808 @default.
- W4225692059 hasConcept C66402592 @default.
- W4225692059 hasConcept C95623464 @default.
- W4225692059 hasConceptScore W4225692059C111919701 @default.
- W4225692059 hasConceptScore W4225692059C119857082 @default.
- W4225692059 hasConceptScore W4225692059C12267149 @default.
- W4225692059 hasConceptScore W4225692059C154945302 @default.
- W4225692059 hasConceptScore W4225692059C165696696 @default.
- W4225692059 hasConceptScore W4225692059C188441871 @default.
- W4225692059 hasConceptScore W4225692059C204321447 @default.
- W4225692059 hasConceptScore W4225692059C2778572836 @default.
- W4225692059 hasConceptScore W4225692059C38652104 @default.
- W4225692059 hasConceptScore W4225692059C41008148 @default.
- W4225692059 hasConceptScore W4225692059C50644808 @default.
- W4225692059 hasConceptScore W4225692059C66402592 @default.
- W4225692059 hasConceptScore W4225692059C95623464 @default.
- W4225692059 hasFunder F4320321001 @default.
- W4225692059 hasFunder F4320324174 @default.