Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225697732> ?p ?o ?g. }
- W4225697732 endingPage "3641" @default.
- W4225697732 startingPage "3641" @default.
- W4225697732 abstract "Deep neural networks have emerged as a leading approach towards handling many natural language processing (NLP) tasks. Deep networks initially conquered the problems of computer vision. However, dealing with sequential data such as text and sound was a nightmare for such networks as traditional deep networks are not reliable in preserving contextual information. This may not harm the results in the case of image processing where we do not care about the sequence, but when we consider the data collected from text for processing, such networks may trigger disastrous results. Moreover, establishing sentence semantics in a colloquial text such as Roman Urdu is a challenge. Additionally, the sparsity and high dimensionality of data in such informal text have encountered a significant challenge for building sentence semantics. To overcome this problem, we propose a deep recurrent architecture RU-BiLSTM based on bidirectional LSTM (BiLSTM) coupled with word embedding and an attention mechanism for sentiment analysis of Roman Urdu. Our proposed model uses the bidirectional LSTM to preserve the context in both directions and the attention mechanism to concentrate on more important features. Eventually, the last dense softmax output layer is used to acquire the binary and ternary classification results. We empirically evaluated our model on two available datasets of Roman Urdu, i.e., RUECD and RUSA-19. Our proposed model outperformed the baseline models on many grounds, and a significant improvement of 6% to 8% is achieved over baseline models." @default.
- W4225697732 created "2022-05-05" @default.
- W4225697732 creator A5016357100 @default.
- W4225697732 creator A5016529029 @default.
- W4225697732 creator A5044015235 @default.
- W4225697732 creator A5045728872 @default.
- W4225697732 creator A5088106834 @default.
- W4225697732 date "2022-04-04" @default.
- W4225697732 modified "2023-10-18" @default.
- W4225697732 title "Attention-Based RU-BiLSTM Sentiment Analysis Model for Roman Urdu" @default.
- W4225697732 cites W1689711448 @default.
- W4225697732 cites W1797037330 @default.
- W4225697732 cites W2015452969 @default.
- W4225697732 cites W2031998113 @default.
- W4225697732 cites W2064675550 @default.
- W4225697732 cites W2076063813 @default.
- W4225697732 cites W2103614420 @default.
- W4225697732 cites W2118978333 @default.
- W4225697732 cites W2203890649 @default.
- W4225697732 cites W2493916176 @default.
- W4225697732 cites W2565516711 @default.
- W4225697732 cites W2728594344 @default.
- W4225697732 cites W2779594574 @default.
- W4225697732 cites W2801716390 @default.
- W4225697732 cites W2805768851 @default.
- W4225697732 cites W2810665353 @default.
- W4225697732 cites W2885559102 @default.
- W4225697732 cites W2890269216 @default.
- W4225697732 cites W2905153662 @default.
- W4225697732 cites W2914363692 @default.
- W4225697732 cites W2914767245 @default.
- W4225697732 cites W2927439335 @default.
- W4225697732 cites W2982888304 @default.
- W4225697732 cites W2993843842 @default.
- W4225697732 cites W3005825976 @default.
- W4225697732 cites W3010388538 @default.
- W4225697732 cites W3015742135 @default.
- W4225697732 cites W3023211633 @default.
- W4225697732 cites W3031799599 @default.
- W4225697732 cites W3036760948 @default.
- W4225697732 cites W3045086295 @default.
- W4225697732 cites W3081372466 @default.
- W4225697732 cites W3087752199 @default.
- W4225697732 cites W3090154305 @default.
- W4225697732 cites W3093277071 @default.
- W4225697732 cites W3095369918 @default.
- W4225697732 cites W3096295776 @default.
- W4225697732 cites W3117864197 @default.
- W4225697732 cites W3118321697 @default.
- W4225697732 cites W3124640783 @default.
- W4225697732 cites W3124821295 @default.
- W4225697732 cites W3132210793 @default.
- W4225697732 cites W3133966466 @default.
- W4225697732 cites W3159506165 @default.
- W4225697732 cites W3161925192 @default.
- W4225697732 cites W3163841364 @default.
- W4225697732 cites W3165519921 @default.
- W4225697732 cites W3195161349 @default.
- W4225697732 cites W3198331626 @default.
- W4225697732 cites W4200542230 @default.
- W4225697732 cites W4225906996 @default.
- W4225697732 doi "https://doi.org/10.3390/app12073641" @default.
- W4225697732 hasPublicationYear "2022" @default.
- W4225697732 type Work @default.
- W4225697732 citedByCount "10" @default.
- W4225697732 countsByYear W42256977322022 @default.
- W4225697732 countsByYear W42256977322023 @default.
- W4225697732 crossrefType "journal-article" @default.
- W4225697732 hasAuthorship W4225697732A5016357100 @default.
- W4225697732 hasAuthorship W4225697732A5016529029 @default.
- W4225697732 hasAuthorship W4225697732A5044015235 @default.
- W4225697732 hasAuthorship W4225697732A5045728872 @default.
- W4225697732 hasAuthorship W4225697732A5088106834 @default.
- W4225697732 hasBestOaLocation W42256977321 @default.
- W4225697732 hasConcept C108583219 @default.
- W4225697732 hasConcept C111368507 @default.
- W4225697732 hasConcept C12725497 @default.
- W4225697732 hasConcept C127313418 @default.
- W4225697732 hasConcept C138885662 @default.
- W4225697732 hasConcept C154945302 @default.
- W4225697732 hasConcept C188441871 @default.
- W4225697732 hasConcept C204321447 @default.
- W4225697732 hasConcept C2777350258 @default.
- W4225697732 hasConcept C2777462759 @default.
- W4225697732 hasConcept C2777530160 @default.
- W4225697732 hasConcept C41008148 @default.
- W4225697732 hasConcept C41608201 @default.
- W4225697732 hasConcept C41895202 @default.
- W4225697732 hasConceptScore W4225697732C108583219 @default.
- W4225697732 hasConceptScore W4225697732C111368507 @default.
- W4225697732 hasConceptScore W4225697732C12725497 @default.
- W4225697732 hasConceptScore W4225697732C127313418 @default.
- W4225697732 hasConceptScore W4225697732C138885662 @default.
- W4225697732 hasConceptScore W4225697732C154945302 @default.
- W4225697732 hasConceptScore W4225697732C188441871 @default.
- W4225697732 hasConceptScore W4225697732C204321447 @default.
- W4225697732 hasConceptScore W4225697732C2777350258 @default.
- W4225697732 hasConceptScore W4225697732C2777462759 @default.