Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225725044> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4225725044 endingPage "2964" @default.
- W4225725044 startingPage "2955" @default.
- W4225725044 abstract "In this article, a novel training set optimization method in an artificial neural network (ANN) constructed for high bandwidth interconnects design is proposed based on rigorous probability analysis. In general, the accuracy of an ANN is enhanced by increasing training set size. However, generating large training sets is inevitably time-consuming and resource-demanding, and sometimes even impossible due to limited prototypes or measurement scenarios. Especially, when the number of channels in required design are huge such as graphics double data rate (GDDR) memory and high bandwidth memory (HBM). Therefore, optimizing the training set selection process is crucial to minimizing the training datasets for developing an efficient ANN. According to rigorous mathematical analysis of the uniformity of the training data by probability distribution function, optimization flow of the range selection is proposed to improve accuracy and efficiency. The optimal number of training data samples is further determined by studying the prediction error rates. The performance of the proposed method in terms of accuracy is validated by comparing the scattering parameters of arbitrarily chosen strip and microstrip type GDDR interconnects obtained from EM simulations with those predicted by ANNs using default and the proposed training-set selection methods." @default.
- W4225725044 created "2022-05-05" @default.
- W4225725044 creator A5002881987 @default.
- W4225725044 creator A5013366517 @default.
- W4225725044 creator A5059098309 @default.
- W4225725044 creator A5068579316 @default.
- W4225725044 creator A5076579833 @default.
- W4225725044 creator A5079677096 @default.
- W4225725044 date "2022-06-01" @default.
- W4225725044 modified "2023-09-30" @default.
- W4225725044 title "Training Set Optimization in an Artificial Neural Network Constructed for High Bandwidth Interconnects Design" @default.
- W4225725044 cites W1966617304 @default.
- W4225725044 cites W1974797401 @default.
- W4225725044 cites W1983217896 @default.
- W4225725044 cites W2032969363 @default.
- W4225725044 cites W2089513795 @default.
- W4225725044 cites W2096570668 @default.
- W4225725044 cites W2106736446 @default.
- W4225725044 cites W2111207244 @default.
- W4225725044 cites W2116275403 @default.
- W4225725044 cites W2119160020 @default.
- W4225725044 cites W2121050684 @default.
- W4225725044 cites W2122162928 @default.
- W4225725044 cites W2131624315 @default.
- W4225725044 cites W2146229122 @default.
- W4225725044 cites W2726342196 @default.
- W4225725044 cites W2779336415 @default.
- W4225725044 cites W2782731083 @default.
- W4225725044 cites W2790663469 @default.
- W4225725044 cites W2896253122 @default.
- W4225725044 cites W2950381586 @default.
- W4225725044 cites W3046003371 @default.
- W4225725044 cites W3083649540 @default.
- W4225725044 cites W3089013025 @default.
- W4225725044 cites W3094716234 @default.
- W4225725044 cites W3097620993 @default.
- W4225725044 cites W4238404964 @default.
- W4225725044 cites W4247680473 @default.
- W4225725044 cites W658375737 @default.
- W4225725044 doi "https://doi.org/10.1109/tmtt.2022.3162209" @default.
- W4225725044 hasPublicationYear "2022" @default.
- W4225725044 type Work @default.
- W4225725044 citedByCount "4" @default.
- W4225725044 countsByYear W42257250442022 @default.
- W4225725044 countsByYear W42257250442023 @default.
- W4225725044 crossrefType "journal-article" @default.
- W4225725044 hasAuthorship W4225725044A5002881987 @default.
- W4225725044 hasAuthorship W4225725044A5013366517 @default.
- W4225725044 hasAuthorship W4225725044A5059098309 @default.
- W4225725044 hasAuthorship W4225725044A5068579316 @default.
- W4225725044 hasAuthorship W4225725044A5076579833 @default.
- W4225725044 hasAuthorship W4225725044A5079677096 @default.
- W4225725044 hasConcept C119857082 @default.
- W4225725044 hasConcept C154945302 @default.
- W4225725044 hasConcept C2776257435 @default.
- W4225725044 hasConcept C31258907 @default.
- W4225725044 hasConcept C41008148 @default.
- W4225725044 hasConcept C50644808 @default.
- W4225725044 hasConceptScore W4225725044C119857082 @default.
- W4225725044 hasConceptScore W4225725044C154945302 @default.
- W4225725044 hasConceptScore W4225725044C2776257435 @default.
- W4225725044 hasConceptScore W4225725044C31258907 @default.
- W4225725044 hasConceptScore W4225725044C41008148 @default.
- W4225725044 hasConceptScore W4225725044C50644808 @default.
- W4225725044 hasIssue "6" @default.
- W4225725044 hasLocation W42257250441 @default.
- W4225725044 hasOpenAccess W4225725044 @default.
- W4225725044 hasPrimaryLocation W42257250441 @default.
- W4225725044 hasRelatedWork W2386387936 @default.
- W4225725044 hasRelatedWork W2961085424 @default.
- W4225725044 hasRelatedWork W3046775127 @default.
- W4225725044 hasRelatedWork W3170094116 @default.
- W4225725044 hasRelatedWork W4205958290 @default.
- W4225725044 hasRelatedWork W4285260836 @default.
- W4225725044 hasRelatedWork W4286629047 @default.
- W4225725044 hasRelatedWork W4306321456 @default.
- W4225725044 hasRelatedWork W4306674287 @default.
- W4225725044 hasRelatedWork W4224009465 @default.
- W4225725044 hasVolume "70" @default.
- W4225725044 isParatext "false" @default.
- W4225725044 isRetracted "false" @default.
- W4225725044 workType "article" @default.