Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225733909> ?p ?o ?g. }
- W4225733909 endingPage "433" @default.
- W4225733909 startingPage "339" @default.
- W4225733909 abstract "The ever-increasing mortality rate due to cancer has necessitated the development of new and effective techniques for selective destruction of cancerous cells. Among the various therapeutic methods, photo-thermal therapy has attracted considerable attention. The subject of photo-thermal therapy requires a detailed understanding of light-tissue interaction and the subsequent heat transfer process(es) through biological samples. The present review article focuses on the detailed review of literature on numerical modeling of the phenomena of light-tissue interaction and the resultant thermal response of laser-irradiated biological samples. While a comprehensive review of works of various researchers has been presented as a literature survey, discussion on various numerical models and the corresponding results has been primarily based on the authors' published works. Following the principles of photo-thermal therapy, the temperature rise of biological tissue depends on the light absorption, which makes it essential to precisely model the phenomenon of laser-tissue interaction. In this context, the transient radiative transfer equation is considered to be the most accurate. Being an integrodifferential equation, complete analytical solution of the radiative transfer equation (RTE) is challenging. Hence, a range of numerical models was developed to determine the light intensity distribution within the laser-irradiated biological samples. In this direction, the transient RTE has been solved using the discrete ordinates method (DOM). The solution of the RTE has then been coupled with various bio-heat transfer models. In order to quantify the influence of convective effects on tissue temperature distribution, the pulsatile nature of blood flow in large blood vessels has been considered. The solution of the RTE has been coupled with the energy equation, and Navier-Stokes equations have been solved for the velocity field. Results of the study revealed a strong influence of the pulsatile blood flow on the temperature distribution in the surrounding tissue region. An increase in temperature due to laser-irradiation is found to be less in the presence of blood flow as compared to that achieved without blood vessels. Limitations of conventional Fourier heat conduction models in accurately predicting the temperatures of laser-irradiated biological samples have been highlighted by various researchers. These limitations arise primarily due to the assumption of the infinite speed of thermal wave propagation. Such assumptions break down in biological samples since they are primarily composed of nonhomogeneous structures. These aspects have emphasized the importance of non-Fourier heat conduction models for photo-thermal applications. With this as the motivation, the solution of the transient RTE has been coupled with the generalized form of non-Fourier heat conduction models to predict the thermal response of the tissue phantoms. The non-Fourier numerical results have also been compared to the corresponding finite integral transform (FIT)-based analytical solutions. The relative influence of relaxation times associated with the temperature gradients (τT) and heat flux (τq) on the resultant thermal profiles has been studied and discussed. The work reported in this review article holds importance in optimizing the laser parameters for therapeutic applications so that the cell destruction is limited only up to the extent of abnormal/cancerous cells and minimum damage is incurred to the surrounding normal/healthy biological cells." @default.
- W4225733909 created "2022-05-05" @default.
- W4225733909 creator A5035198898 @default.
- W4225733909 creator A5089652526 @default.
- W4225733909 date "2022-01-01" @default.
- W4225733909 modified "2023-09-27" @default.
- W4225733909 title "MODELING THE THERMAL RESPONSE OF LASER-IRRADIATED BIOLOGICAL SAMPLES THROUGH GENERALIZED NON-FOURIER HEAT CONDUCTION MODELS: A REVIEW" @default.
- W4225733909 cites W1964588257 @default.
- W4225733909 cites W1964802522 @default.
- W4225733909 cites W1967394178 @default.
- W4225733909 cites W1968452620 @default.
- W4225733909 cites W1972479281 @default.
- W4225733909 cites W1972871011 @default.
- W4225733909 cites W1977350781 @default.
- W4225733909 cites W1977746315 @default.
- W4225733909 cites W1979570266 @default.
- W4225733909 cites W1984135742 @default.
- W4225733909 cites W1986405716 @default.
- W4225733909 cites W1989416913 @default.
- W4225733909 cites W1993755488 @default.
- W4225733909 cites W1999355247 @default.
- W4225733909 cites W2000877376 @default.
- W4225733909 cites W2004321475 @default.
- W4225733909 cites W2004557364 @default.
- W4225733909 cites W2005096712 @default.
- W4225733909 cites W2007035239 @default.
- W4225733909 cites W2008360574 @default.
- W4225733909 cites W2011534646 @default.
- W4225733909 cites W2012597904 @default.
- W4225733909 cites W2013742076 @default.
- W4225733909 cites W2014310542 @default.
- W4225733909 cites W2014543459 @default.
- W4225733909 cites W2017355074 @default.
- W4225733909 cites W2022216734 @default.
- W4225733909 cites W2022834494 @default.
- W4225733909 cites W2023794258 @default.
- W4225733909 cites W2026131421 @default.
- W4225733909 cites W2027578811 @default.
- W4225733909 cites W2027676568 @default.
- W4225733909 cites W2029141895 @default.
- W4225733909 cites W2031361958 @default.
- W4225733909 cites W2032466429 @default.
- W4225733909 cites W2033303599 @default.
- W4225733909 cites W2034622207 @default.
- W4225733909 cites W2035654949 @default.
- W4225733909 cites W2035669973 @default.
- W4225733909 cites W2036083863 @default.
- W4225733909 cites W2037235139 @default.
- W4225733909 cites W2038649742 @default.
- W4225733909 cites W2038940027 @default.
- W4225733909 cites W2039737262 @default.
- W4225733909 cites W2039810579 @default.
- W4225733909 cites W2041496726 @default.
- W4225733909 cites W2042128725 @default.
- W4225733909 cites W2042348537 @default.
- W4225733909 cites W2043078458 @default.
- W4225733909 cites W2043283297 @default.
- W4225733909 cites W2043971670 @default.
- W4225733909 cites W2045852923 @default.
- W4225733909 cites W2047022926 @default.
- W4225733909 cites W2050669544 @default.
- W4225733909 cites W2056633659 @default.
- W4225733909 cites W2057099635 @default.
- W4225733909 cites W2057196629 @default.
- W4225733909 cites W2059301195 @default.
- W4225733909 cites W2061908860 @default.
- W4225733909 cites W2062476442 @default.
- W4225733909 cites W2062812691 @default.
- W4225733909 cites W2062900651 @default.
- W4225733909 cites W2063129664 @default.
- W4225733909 cites W2065241506 @default.
- W4225733909 cites W2068151778 @default.
- W4225733909 cites W2068645989 @default.
- W4225733909 cites W2069045309 @default.
- W4225733909 cites W2069295802 @default.
- W4225733909 cites W2070009596 @default.
- W4225733909 cites W2070648767 @default.
- W4225733909 cites W2071707554 @default.
- W4225733909 cites W2076530837 @default.
- W4225733909 cites W2077913570 @default.
- W4225733909 cites W2077986489 @default.
- W4225733909 cites W2078259441 @default.
- W4225733909 cites W2080845587 @default.
- W4225733909 cites W2082236989 @default.
- W4225733909 cites W2082681801 @default.
- W4225733909 cites W2084350439 @default.
- W4225733909 cites W2087009179 @default.
- W4225733909 cites W2087125454 @default.
- W4225733909 cites W2088276468 @default.
- W4225733909 cites W2091635543 @default.
- W4225733909 cites W2092259742 @default.
- W4225733909 cites W2093384569 @default.
- W4225733909 cites W2093688029 @default.
- W4225733909 cites W2098443262 @default.
- W4225733909 cites W2100066458 @default.
- W4225733909 cites W2103269088 @default.
- W4225733909 cites W2108329838 @default.
- W4225733909 cites W2108816022 @default.