Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225741240> ?p ?o ?g. }
- W4225741240 endingPage "19295" @default.
- W4225741240 startingPage "19273" @default.
- W4225741240 abstract "Deep neural network (DNN)-based video processing methods are applied in mobile video analytics because of high accuracy. Edge computing is an efficient paradigm that improves the performance of mobile video analytics. However, due to the limited computing and storage resources at edge devices, deploying DNN-based video analytics at edge devices may have difficulty to meet user’s requirements in terms of accuracy, delay, power consumption, and device costs. Choosing optimal system configuration, including resources on edge devices and parameters in video stream and DNN models, can better satisfy user’s performance requirements; however, there lacks practical approaches to find such optimal configurations. In this article, we take an initial step to investigate the optimal system configuration problem, and propose a data-driven approach, EdgeEye, which first models the above problem as a combinatorial optimization problem, and then designs an algorithm to find the solutions for the optimal configuration. These models and algorithms are applied in a real-world face detection and recognition application based on two edge computing models, including edge only and edge server. Comprehensive evaluation results demonstrate that EdgeEye can find both feasible and optimal system configurations including optimal edge computing model to satisfy varying user requirements under different network conditions." @default.
- W4225741240 created "2022-05-05" @default.
- W4225741240 creator A5016260066 @default.
- W4225741240 creator A5035349323 @default.
- W4225741240 creator A5054626190 @default.
- W4225741240 creator A5061053956 @default.
- W4225741240 date "2022-10-01" @default.
- W4225741240 modified "2023-10-08" @default.
- W4225741240 title "EdgeEye: A Data-Driven Approach for Optimal Deployment of Edge Video Analytics" @default.
- W4225741240 cites W1532550312 @default.
- W4225741240 cites W1983589513 @default.
- W4225741240 cites W2029016069 @default.
- W4225741240 cites W2030253454 @default.
- W4225741240 cites W2052307382 @default.
- W4225741240 cites W2072641892 @default.
- W4225741240 cites W2080017588 @default.
- W4225741240 cites W2086402015 @default.
- W4225741240 cites W2086574394 @default.
- W4225741240 cites W2101788345 @default.
- W4225741240 cites W2155893237 @default.
- W4225741240 cites W2194775991 @default.
- W4225741240 cites W2233116163 @default.
- W4225741240 cites W2344423009 @default.
- W4225741240 cites W2416799949 @default.
- W4225741240 cites W2468875367 @default.
- W4225741240 cites W2517331439 @default.
- W4225741240 cites W2558974524 @default.
- W4225741240 cites W2587150922 @default.
- W4225741240 cites W2596636257 @default.
- W4225741240 cites W2605258629 @default.
- W4225741240 cites W2678047256 @default.
- W4225741240 cites W2727238169 @default.
- W4225741240 cites W2730523305 @default.
- W4225741240 cites W2762026494 @default.
- W4225741240 cites W2766454412 @default.
- W4225741240 cites W2766827306 @default.
- W4225741240 cites W2767011558 @default.
- W4225741240 cites W2767149267 @default.
- W4225741240 cites W2768475350 @default.
- W4225741240 cites W2792220137 @default.
- W4225741240 cites W2797477167 @default.
- W4225741240 cites W2802878531 @default.
- W4225741240 cites W2807214292 @default.
- W4225741240 cites W2809251854 @default.
- W4225741240 cites W2896167869 @default.
- W4225741240 cites W2896225285 @default.
- W4225741240 cites W2899915146 @default.
- W4225741240 cites W2902264868 @default.
- W4225741240 cites W2902547952 @default.
- W4225741240 cites W2904629283 @default.
- W4225741240 cites W2914564675 @default.
- W4225741240 cites W2941971445 @default.
- W4225741240 cites W2962883027 @default.
- W4225741240 cites W2963150697 @default.
- W4225741240 cites W2964248614 @default.
- W4225741240 cites W2966313861 @default.
- W4225741240 cites W2973930118 @default.
- W4225741240 cites W2982656930 @default.
- W4225741240 cites W2997199666 @default.
- W4225741240 cites W3004109511 @default.
- W4225741240 cites W3030218575 @default.
- W4225741240 cites W3047392327 @default.
- W4225741240 cites W3059999910 @default.
- W4225741240 cites W3098645868 @default.
- W4225741240 cites W3099206234 @default.
- W4225741240 cites W3101998545 @default.
- W4225741240 cites W3102836279 @default.
- W4225741240 cites W3122087971 @default.
- W4225741240 cites W3146353309 @default.
- W4225741240 cites W3156233896 @default.
- W4225741240 cites W783096245 @default.
- W4225741240 doi "https://doi.org/10.1109/jiot.2022.3166896" @default.
- W4225741240 hasPublicationYear "2022" @default.
- W4225741240 type Work @default.
- W4225741240 citedByCount "1" @default.
- W4225741240 countsByYear W42257412402022 @default.
- W4225741240 crossrefType "journal-article" @default.
- W4225741240 hasAuthorship W4225741240A5016260066 @default.
- W4225741240 hasAuthorship W4225741240A5035349323 @default.
- W4225741240 hasAuthorship W4225741240A5054626190 @default.
- W4225741240 hasAuthorship W4225741240A5061053956 @default.
- W4225741240 hasConcept C105339364 @default.
- W4225741240 hasConcept C111919701 @default.
- W4225741240 hasConcept C120314980 @default.
- W4225741240 hasConcept C124101348 @default.
- W4225741240 hasConcept C138236772 @default.
- W4225741240 hasConcept C154945302 @default.
- W4225741240 hasConcept C162307627 @default.
- W4225741240 hasConcept C2778456923 @default.
- W4225741240 hasConcept C41008148 @default.
- W4225741240 hasConcept C50644808 @default.
- W4225741240 hasConcept C79158427 @default.
- W4225741240 hasConcept C79403827 @default.
- W4225741240 hasConcept C79974875 @default.
- W4225741240 hasConceptScore W4225741240C105339364 @default.
- W4225741240 hasConceptScore W4225741240C111919701 @default.
- W4225741240 hasConceptScore W4225741240C120314980 @default.
- W4225741240 hasConceptScore W4225741240C124101348 @default.