Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225743482> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4225743482 endingPage "104556" @default.
- W4225743482 startingPage "104556" @default.
- W4225743482 abstract "As the capabilities of convolutional neural networks (CNNs) for image classification tasks have advanced, interest in applying deep learning techniques for determining the natural and anthropogenic origins of uranium ore concentrates (UOCs) and other unknown nuclear materials by their surface morphology characteristics has grown. But before CNNs can join the nuclear forensics toolbox along more traditional analytical techniques – such as scanning electron microscopy (SEM), X-ray diffractometry, mass spectrometry, radiation counting, and any number of spectroscopic methods – a deeper understanding of “black box” image classification will be required. This paper explores uncertainty quantification for convolutional neural networks and their ability to generalize to out-of-distribution (OOD) image data sets. For prediction uncertainty, Monte Carlo (MC) dropout and random image crops as variational inference techniques are implemented and characterized. Convolutional neural networks and classifiers using image features from unsupervised vector-quantized variational autoencoders (VQ-VAE) are trained using SEM images of pure, unaged, unmixed uranium ore concentrates considered “unperturbed.” OOD data sets are developed containing perturbations from the training data with respect to the chemical and physical properties of the UOCs or data collection parameters; predictions made on the perturbation sets identify where significant shortcomings exist in the current training data and techniques used to develop models for classifying uranium process history, and provides valuable insights into how datasets and classification models can be improved for better generalizability to out-of-distribution examples." @default.
- W4225743482 created "2022-05-05" @default.
- W4225743482 creator A5002692156 @default.
- W4225743482 creator A5059125158 @default.
- W4225743482 creator A5061053019 @default.
- W4225743482 creator A5062469692 @default.
- W4225743482 creator A5071308396 @default.
- W4225743482 creator A5080750208 @default.
- W4225743482 date "2022-06-01" @default.
- W4225743482 modified "2023-10-16" @default.
- W4225743482 title "Characterization of uncertainties and model generalizability for convolutional neural network predictions of uranium ore concentrate morphology" @default.
- W4225743482 cites W1880121116 @default.
- W4225743482 cites W1995875735 @default.
- W4225743482 cites W2111959010 @default.
- W4225743482 cites W2112796928 @default.
- W4225743482 cites W2122443290 @default.
- W4225743482 cites W2139605477 @default.
- W4225743482 cites W2300445845 @default.
- W4225743482 cites W2582177138 @default.
- W4225743482 cites W2607291805 @default.
- W4225743482 cites W2622826443 @default.
- W4225743482 cites W2745264892 @default.
- W4225743482 cites W2801841333 @default.
- W4225743482 cites W2808950457 @default.
- W4225743482 cites W2898659412 @default.
- W4225743482 cites W2935762279 @default.
- W4225743482 cites W2940837480 @default.
- W4225743482 cites W2946371487 @default.
- W4225743482 cites W2948978827 @default.
- W4225743482 cites W2955138331 @default.
- W4225743482 cites W2974040794 @default.
- W4225743482 cites W2981731882 @default.
- W4225743482 cites W3010154733 @default.
- W4225743482 cites W3033570689 @default.
- W4225743482 cites W3035447285 @default.
- W4225743482 cites W3109473563 @default.
- W4225743482 cites W3139378395 @default.
- W4225743482 cites W3153134435 @default.
- W4225743482 cites W3179517396 @default.
- W4225743482 doi "https://doi.org/10.1016/j.chemolab.2022.104556" @default.
- W4225743482 hasPublicationYear "2022" @default.
- W4225743482 type Work @default.
- W4225743482 citedByCount "2" @default.
- W4225743482 countsByYear W42257434822022 @default.
- W4225743482 crossrefType "journal-article" @default.
- W4225743482 hasAuthorship W4225743482A5002692156 @default.
- W4225743482 hasAuthorship W4225743482A5059125158 @default.
- W4225743482 hasAuthorship W4225743482A5061053019 @default.
- W4225743482 hasAuthorship W4225743482A5062469692 @default.
- W4225743482 hasAuthorship W4225743482A5071308396 @default.
- W4225743482 hasAuthorship W4225743482A5080750208 @default.
- W4225743482 hasConcept C105795698 @default.
- W4225743482 hasConcept C108583219 @default.
- W4225743482 hasConcept C115961682 @default.
- W4225743482 hasConcept C119857082 @default.
- W4225743482 hasConcept C124101348 @default.
- W4225743482 hasConcept C153180895 @default.
- W4225743482 hasConcept C154945302 @default.
- W4225743482 hasConcept C27158222 @default.
- W4225743482 hasConcept C33923547 @default.
- W4225743482 hasConcept C41008148 @default.
- W4225743482 hasConcept C50644808 @default.
- W4225743482 hasConcept C75294576 @default.
- W4225743482 hasConcept C81363708 @default.
- W4225743482 hasConceptScore W4225743482C105795698 @default.
- W4225743482 hasConceptScore W4225743482C108583219 @default.
- W4225743482 hasConceptScore W4225743482C115961682 @default.
- W4225743482 hasConceptScore W4225743482C119857082 @default.
- W4225743482 hasConceptScore W4225743482C124101348 @default.
- W4225743482 hasConceptScore W4225743482C153180895 @default.
- W4225743482 hasConceptScore W4225743482C154945302 @default.
- W4225743482 hasConceptScore W4225743482C27158222 @default.
- W4225743482 hasConceptScore W4225743482C33923547 @default.
- W4225743482 hasConceptScore W4225743482C41008148 @default.
- W4225743482 hasConceptScore W4225743482C50644808 @default.
- W4225743482 hasConceptScore W4225743482C75294576 @default.
- W4225743482 hasConceptScore W4225743482C81363708 @default.
- W4225743482 hasFunder F4320306110 @default.
- W4225743482 hasFunder F4320337501 @default.
- W4225743482 hasLocation W42257434821 @default.
- W4225743482 hasOpenAccess W4225743482 @default.
- W4225743482 hasPrimaryLocation W42257434821 @default.
- W4225743482 hasRelatedWork W2911497689 @default.
- W4225743482 hasRelatedWork W2952813363 @default.
- W4225743482 hasRelatedWork W3029198973 @default.
- W4225743482 hasRelatedWork W3133861977 @default.
- W4225743482 hasRelatedWork W3167935049 @default.
- W4225743482 hasRelatedWork W3193565141 @default.
- W4225743482 hasRelatedWork W4226493464 @default.
- W4225743482 hasRelatedWork W4312417841 @default.
- W4225743482 hasRelatedWork W4360783045 @default.
- W4225743482 hasRelatedWork W4378678253 @default.
- W4225743482 hasVolume "225" @default.
- W4225743482 isParatext "false" @default.
- W4225743482 isRetracted "false" @default.
- W4225743482 workType "article" @default.