Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225746601> ?p ?o ?g. }
- W4225746601 endingPage "1239" @default.
- W4225746601 startingPage "1232" @default.
- W4225746601 abstract "Abstract Artificial intelligence (AI) can predict the presence of molecular alterations directly from routine histopathology slides. However, training robust AI systems requires large datasets for which data collection faces practical, ethical and legal obstacles. These obstacles could be overcome with swarm learning (SL), in which partners jointly train AI models while avoiding data transfer and monopolistic data governance. Here, we demonstrate the successful use of SL in large, multicentric datasets of gigapixel histopathology images from over 5,000 patients. We show that AI models trained using SL can predict BRAF mutational status and microsatellite instability directly from hematoxylin and eosin (H&E)-stained pathology slides of colorectal cancer. We trained AI models on three patient cohorts from Northern Ireland, Germany and the United States, and validated the prediction performance in two independent datasets from the United Kingdom. Our data show that SL-trained AI models outperform most locally trained models, and perform on par with models that are trained on the merged datasets. In addition, we show that SL-based AI models are data efficient. In the future, SL can be used to train distributed AI models for any histopathology image analysis task, eliminating the need for data transfer." @default.
- W4225746601 created "2022-05-05" @default.
- W4225746601 creator A5000874547 @default.
- W4225746601 creator A5005887947 @default.
- W4225746601 creator A5006242340 @default.
- W4225746601 creator A5010492039 @default.
- W4225746601 creator A5010589327 @default.
- W4225746601 creator A5013026730 @default.
- W4225746601 creator A5016512818 @default.
- W4225746601 creator A5019453132 @default.
- W4225746601 creator A5020564648 @default.
- W4225746601 creator A5022783154 @default.
- W4225746601 creator A5034336361 @default.
- W4225746601 creator A5036777611 @default.
- W4225746601 creator A5045885712 @default.
- W4225746601 creator A5053522042 @default.
- W4225746601 creator A5054579793 @default.
- W4225746601 creator A5056121788 @default.
- W4225746601 creator A5056553215 @default.
- W4225746601 creator A5057475480 @default.
- W4225746601 creator A5059221195 @default.
- W4225746601 creator A5065852572 @default.
- W4225746601 creator A5070145160 @default.
- W4225746601 creator A5070895143 @default.
- W4225746601 creator A5071494882 @default.
- W4225746601 creator A5073167797 @default.
- W4225746601 creator A5076609492 @default.
- W4225746601 creator A5077206620 @default.
- W4225746601 creator A5086466437 @default.
- W4225746601 date "2022-04-25" @default.
- W4225746601 modified "2023-10-17" @default.
- W4225746601 title "Swarm learning for decentralized artificial intelligence in cancer histopathology" @default.
- W4225746601 cites W2045127388 @default.
- W4225746601 cites W2055732173 @default.
- W4225746601 cites W2109740395 @default.
- W4225746601 cites W2120035070 @default.
- W4225746601 cites W2132162500 @default.
- W4225746601 cites W2156620229 @default.
- W4225746601 cites W2171235660 @default.
- W4225746601 cites W2548051234 @default.
- W4225746601 cites W2565789802 @default.
- W4225746601 cites W2760946358 @default.
- W4225746601 cites W2890016426 @default.
- W4225746601 cites W2948930564 @default.
- W4225746601 cites W2956228567 @default.
- W4225746601 cites W2960198263 @default.
- W4225746601 cites W2988666823 @default.
- W4225746601 cites W2990874078 @default.
- W4225746601 cites W3012243582 @default.
- W4225746601 cites W3014517104 @default.
- W4225746601 cites W3018647685 @default.
- W4225746601 cites W3033511014 @default.
- W4225746601 cites W3036122989 @default.
- W4225746601 cites W3039674406 @default.
- W4225746601 cites W3043602140 @default.
- W4225746601 cites W3043835773 @default.
- W4225746601 cites W3044996171 @default.
- W4225746601 cites W3046305306 @default.
- W4225746601 cites W3048990316 @default.
- W4225746601 cites W3082066016 @default.
- W4225746601 cites W3083804794 @default.
- W4225746601 cites W3086667591 @default.
- W4225746601 cites W3104135675 @default.
- W4225746601 cites W3112310000 @default.
- W4225746601 cites W3121997355 @default.
- W4225746601 cites W3126398568 @default.
- W4225746601 cites W3135345798 @default.
- W4225746601 cites W3153973080 @default.
- W4225746601 cites W3158883948 @default.
- W4225746601 cites W3159302505 @default.
- W4225746601 cites W3164573547 @default.
- W4225746601 cites W3166254754 @default.
- W4225746601 cites W3169460417 @default.
- W4225746601 cites W3185122822 @default.
- W4225746601 cites W3186679119 @default.
- W4225746601 cites W3190686857 @default.
- W4225746601 cites W3195171687 @default.
- W4225746601 cites W3200445016 @default.
- W4225746601 cites W3201366746 @default.
- W4225746601 cites W3205594709 @default.
- W4225746601 cites W3205605830 @default.
- W4225746601 cites W3217644914 @default.
- W4225746601 cites W4200217763 @default.
- W4225746601 doi "https://doi.org/10.1038/s41591-022-01768-5" @default.
- W4225746601 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35469069" @default.
- W4225746601 hasPublicationYear "2022" @default.
- W4225746601 type Work @default.
- W4225746601 citedByCount "57" @default.
- W4225746601 countsByYear W42257466012022 @default.
- W4225746601 countsByYear W42257466012023 @default.
- W4225746601 crossrefType "journal-article" @default.
- W4225746601 hasAuthorship W4225746601A5000874547 @default.
- W4225746601 hasAuthorship W4225746601A5005887947 @default.
- W4225746601 hasAuthorship W4225746601A5006242340 @default.
- W4225746601 hasAuthorship W4225746601A5010492039 @default.
- W4225746601 hasAuthorship W4225746601A5010589327 @default.
- W4225746601 hasAuthorship W4225746601A5013026730 @default.
- W4225746601 hasAuthorship W4225746601A5016512818 @default.