Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225763337> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4225763337 abstract "In electricity markets, electricity retailers or brokers want to maximize profits by allocating tariff profiles to end-consumers. One of the objectives of such demand response management is to incentivize the consumers to adjust their consumption so that the overall electricity procurement in the wholesale markets is minimized, e.g., it is desirable that consumers consume less during peak hours when the cost of procurement for brokers from wholesale markets are high. We consider a greedy solution to maximize the overall profit for brokers by optimal tariff profile allocation, i.e., allocate that tariff profile to a consumer that maximizes the profit with respect to that consumer. This, in turn, requires forecasting electricity consumption for each user for all tariff profiles. This forecasting problem is challenging compared to standard forecasting problems due to following reasons: (1) the number of possible combinations of hourly tariffs is high and retailers may not have considered all combinations in the past resulting in a biased set of tariff profiles tried in the past, i.e., the retailer may want to consider new tariff profiles that may achieve better profits; (2) the profiles allocated in the past to each user is typically based on certain policy, i.e., tariff profile allocation for historical electricity consumption data is biased. These reasons violate the standard IID assumptions as there is a need to evaluate new tariff profiles on existing customers and historical data is biased by the policies used in the past for tariff allocation. In this work, we consider several scenarios for forecasting and optimization under these conditions. We leverage the underlying structure of how consumers respond to variable tariff rates by comparing tariffs across hours and shifting loads, and propose suitable inductive biases in the design of deep neural network based architectures for forecasting under such scenarios. More specifically, we leverage attention mechanisms and permutation equivariant networks that allow desirable processing of tariff profiles to learn tariff representations that are insensitive to the biases in the data and still representative of the task. Through extensive empirical evaluation using the PowerTAC simulator, we show that the proposed approach significantly improves upon standard baselines that tend to overfit to the historical tariff profiles." @default.
- W4225763337 created "2022-05-05" @default.
- W4225763337 creator A5011027469 @default.
- W4225763337 creator A5039306255 @default.
- W4225763337 creator A5065816568 @default.
- W4225763337 creator A5068305426 @default.
- W4225763337 creator A5071894271 @default.
- W4225763337 creator A5079868316 @default.
- W4225763337 date "2022-04-08" @default.
- W4225763337 modified "2023-09-26" @default.
- W4225763337 title "Electricity Consumption Forecasting for Out-of-Distribution Time-of-Use Tariffs" @default.
- W4225763337 cites W1975404935 @default.
- W4225763337 cites W2023409181 @default.
- W4225763337 cites W2061561129 @default.
- W4225763337 cites W2064675550 @default.
- W4225763337 cites W2795276745 @default.
- W4225763337 cites W2904635416 @default.
- W4225763337 cites W2980994438 @default.
- W4225763337 cites W3163842339 @default.
- W4225763337 cites W3199328447 @default.
- W4225763337 doi "https://doi.org/10.3390/cmsf2022003001" @default.
- W4225763337 hasPublicationYear "2022" @default.
- W4225763337 type Work @default.
- W4225763337 citedByCount "0" @default.
- W4225763337 crossrefType "proceedings-article" @default.
- W4225763337 hasAuthorship W4225763337A5011027469 @default.
- W4225763337 hasAuthorship W4225763337A5039306255 @default.
- W4225763337 hasAuthorship W4225763337A5065816568 @default.
- W4225763337 hasAuthorship W4225763337A5068305426 @default.
- W4225763337 hasAuthorship W4225763337A5071894271 @default.
- W4225763337 hasAuthorship W4225763337A5079868316 @default.
- W4225763337 hasBestOaLocation W42257633371 @default.
- W4225763337 hasConcept C119599485 @default.
- W4225763337 hasConcept C127413603 @default.
- W4225763337 hasConcept C144024400 @default.
- W4225763337 hasConcept C144133560 @default.
- W4225763337 hasConcept C162324750 @default.
- W4225763337 hasConcept C162853370 @default.
- W4225763337 hasConcept C175444787 @default.
- W4225763337 hasConcept C181622380 @default.
- W4225763337 hasConcept C18547055 @default.
- W4225763337 hasConcept C201650216 @default.
- W4225763337 hasConcept C206658404 @default.
- W4225763337 hasConcept C2776060655 @default.
- W4225763337 hasConcept C30772137 @default.
- W4225763337 hasConcept C36289849 @default.
- W4225763337 hasConcept C40700 @default.
- W4225763337 hasConceptScore W4225763337C119599485 @default.
- W4225763337 hasConceptScore W4225763337C127413603 @default.
- W4225763337 hasConceptScore W4225763337C144024400 @default.
- W4225763337 hasConceptScore W4225763337C144133560 @default.
- W4225763337 hasConceptScore W4225763337C162324750 @default.
- W4225763337 hasConceptScore W4225763337C162853370 @default.
- W4225763337 hasConceptScore W4225763337C175444787 @default.
- W4225763337 hasConceptScore W4225763337C181622380 @default.
- W4225763337 hasConceptScore W4225763337C18547055 @default.
- W4225763337 hasConceptScore W4225763337C201650216 @default.
- W4225763337 hasConceptScore W4225763337C206658404 @default.
- W4225763337 hasConceptScore W4225763337C2776060655 @default.
- W4225763337 hasConceptScore W4225763337C30772137 @default.
- W4225763337 hasConceptScore W4225763337C36289849 @default.
- W4225763337 hasConceptScore W4225763337C40700 @default.
- W4225763337 hasLocation W42257633371 @default.
- W4225763337 hasLocation W42257633372 @default.
- W4225763337 hasOpenAccess W4225763337 @default.
- W4225763337 hasPrimaryLocation W42257633371 @default.
- W4225763337 hasRelatedWork W2060638826 @default.
- W4225763337 hasRelatedWork W2133583745 @default.
- W4225763337 hasRelatedWork W2158377409 @default.
- W4225763337 hasRelatedWork W2160848655 @default.
- W4225763337 hasRelatedWork W2169332733 @default.
- W4225763337 hasRelatedWork W2810549472 @default.
- W4225763337 hasRelatedWork W3127348029 @default.
- W4225763337 hasRelatedWork W3158503494 @default.
- W4225763337 hasRelatedWork W4312931572 @default.
- W4225763337 hasRelatedWork W4313321460 @default.
- W4225763337 isParatext "false" @default.
- W4225763337 isRetracted "false" @default.
- W4225763337 workType "article" @default.