Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225786590> ?p ?o ?g. }
- W4225786590 endingPage "7892" @default.
- W4225786590 startingPage "7873" @default.
- W4225786590 abstract "Abstract. Grating spectrographs (GS) are presently widely in use for atmospheric trace gas remote sensing in the ultraviolet (UV) and visible spectral range (e.g. differential optical absorption spectroscopy, DOAS). For typical DOAS applications, GSs have a spectral resolution of about 0.5 nm, corresponding to a resolving power R (ratio of operating wavelength to spectral resolution) of approximately 1000. This is sufficient to quantify the vibro-electronic spectral structure of the absorption of many trace gases with good accuracy and further allows for mobile (i.e. compact and stable) instrumentation. However, a much higher resolving power (R≈105, i.e. a spectral resolution of about the width of an individual rotational absorption line) would facilitate the measurement of further trace gases (e.g. OH radicals), significantly reduce cross interferences due to other absorption and scattering processes, and provide enhanced sensitivity. Despite these major advantages, only very few atmospheric studies with high-resolution GSs are reported, mostly because increasing the resolving power of a GS leads to largely reduced light throughput and mobility. However, for many environmental studies, light throughput and mobility of measurement equipment are central limiting factors, for instance when absorption spectroscopy is applied to quantify reactive trace gases in remote areas (e.g. volcanoes) or from airborne or space-borne platforms. For more than a century, Fabry–Pérot interferometers (FPIs) have been successfully used for high-resolution spectroscopy in many scientific fields where they are known for their superior light throughput. However, except for a few studies, FPIs have hardly received any attention in atmospheric trace gas remote sensing, despite their advantages. We propose different high-resolution FPI spectrograph implementations and compare their light throughput and mobility to GSs with the same resolving power. We find that nowadays mobile high-resolution FPI spectrographs can have a more than 2 orders of magnitude higher light throughput than their immobile high-resolution GS counterparts. Compared with moderate-resolution GSs (as routinely used for DOAS), an FPI spectrograph reaches a 250 times higher spectral resolution while the signal-to-noise ratio (SNR) is reduced by only a factor of 10. Using a first compact prototype of a high-resolution FPI spectrograph (R≈148 000, <8 L, <5 kg), we demonstrate that these expectations are realistic. Using mobile and high-resolution FPI spectrographs could have a large impact on atmospheric near-UV to near-infrared (NIR) remote sensing. Applications include the enhancement of the sensitivity and selectivity of absorption measurements of many atmospheric trace gases and their isotopologues, the direct quantification of OH radicals in the troposphere, high-resolution O2 measurements for radiative transfer and aerosol studies, and solar-induced chlorophyll fluorescence quantification using Fraunhofer lines." @default.
- W4225786590 created "2022-05-05" @default.
- W4225786590 creator A5019520455 @default.
- W4225786590 creator A5033109996 @default.
- W4225786590 creator A5057840118 @default.
- W4225786590 creator A5077726577 @default.
- W4225786590 date "2021-12-17" @default.
- W4225786590 modified "2023-10-17" @default.
- W4225786590 title "Mobile and high-spectral-resolution Fabry–Pérot interferometer spectrographs for atmospheric remote sensing" @default.
- W4225786590 cites W1610880835 @default.
- W4225786590 cites W1980182854 @default.
- W4225786590 cites W1986870984 @default.
- W4225786590 cites W1996526244 @default.
- W4225786590 cites W2001353654 @default.
- W4225786590 cites W2005103219 @default.
- W4225786590 cites W2012173763 @default.
- W4225786590 cites W2021960935 @default.
- W4225786590 cites W2027548066 @default.
- W4225786590 cites W2042719968 @default.
- W4225786590 cites W2048220192 @default.
- W4225786590 cites W2057260437 @default.
- W4225786590 cites W2059812054 @default.
- W4225786590 cites W2060694342 @default.
- W4225786590 cites W2061260402 @default.
- W4225786590 cites W2066220005 @default.
- W4225786590 cites W2071143736 @default.
- W4225786590 cites W2076811641 @default.
- W4225786590 cites W2077784823 @default.
- W4225786590 cites W2078007641 @default.
- W4225786590 cites W2079784527 @default.
- W4225786590 cites W2087391778 @default.
- W4225786590 cites W2089385436 @default.
- W4225786590 cites W2117255130 @default.
- W4225786590 cites W2157582075 @default.
- W4225786590 cites W2170014990 @default.
- W4225786590 cites W2315885724 @default.
- W4225786590 cites W2529373853 @default.
- W4225786590 cites W2549540448 @default.
- W4225786590 cites W2730514107 @default.
- W4225786590 cites W2883461403 @default.
- W4225786590 cites W2897588794 @default.
- W4225786590 cites W3044868409 @default.
- W4225786590 cites W3096176199 @default.
- W4225786590 cites W3126922242 @default.
- W4225786590 cites W3159644936 @default.
- W4225786590 cites W4206050372 @default.
- W4225786590 cites W4234697633 @default.
- W4225786590 doi "https://doi.org/10.5194/amt-14-7873-2021" @default.
- W4225786590 hasPublicationYear "2021" @default.
- W4225786590 type Work @default.
- W4225786590 citedByCount "3" @default.
- W4225786590 countsByYear W42257865902022 @default.
- W4225786590 countsByYear W42257865902023 @default.
- W4225786590 crossrefType "journal-article" @default.
- W4225786590 hasAuthorship W4225786590A5019520455 @default.
- W4225786590 hasAuthorship W4225786590A5033109996 @default.
- W4225786590 hasAuthorship W4225786590A5057840118 @default.
- W4225786590 hasAuthorship W4225786590A5077726577 @default.
- W4225786590 hasBestOaLocation W42257865901 @default.
- W4225786590 hasConcept C119824511 @default.
- W4225786590 hasConcept C120665830 @default.
- W4225786590 hasConcept C121332964 @default.
- W4225786590 hasConcept C124967146 @default.
- W4225786590 hasConcept C125287762 @default.
- W4225786590 hasConcept C127313418 @default.
- W4225786590 hasConcept C1276947 @default.
- W4225786590 hasConcept C130047971 @default.
- W4225786590 hasConcept C153294291 @default.
- W4225786590 hasConcept C166689943 @default.
- W4225786590 hasConcept C169268690 @default.
- W4225786590 hasConcept C192562407 @default.
- W4225786590 hasConcept C194072897 @default.
- W4225786590 hasConcept C23576306 @default.
- W4225786590 hasConcept C32891209 @default.
- W4225786590 hasConcept C4839761 @default.
- W4225786590 hasConcept C62520636 @default.
- W4225786590 hasConcept C6260449 @default.
- W4225786590 hasConcept C62649853 @default.
- W4225786590 hasConceptScore W4225786590C119824511 @default.
- W4225786590 hasConceptScore W4225786590C120665830 @default.
- W4225786590 hasConceptScore W4225786590C121332964 @default.
- W4225786590 hasConceptScore W4225786590C124967146 @default.
- W4225786590 hasConceptScore W4225786590C125287762 @default.
- W4225786590 hasConceptScore W4225786590C127313418 @default.
- W4225786590 hasConceptScore W4225786590C1276947 @default.
- W4225786590 hasConceptScore W4225786590C130047971 @default.
- W4225786590 hasConceptScore W4225786590C153294291 @default.
- W4225786590 hasConceptScore W4225786590C166689943 @default.
- W4225786590 hasConceptScore W4225786590C169268690 @default.
- W4225786590 hasConceptScore W4225786590C192562407 @default.
- W4225786590 hasConceptScore W4225786590C194072897 @default.
- W4225786590 hasConceptScore W4225786590C23576306 @default.
- W4225786590 hasConceptScore W4225786590C32891209 @default.
- W4225786590 hasConceptScore W4225786590C4839761 @default.
- W4225786590 hasConceptScore W4225786590C62520636 @default.
- W4225786590 hasConceptScore W4225786590C6260449 @default.
- W4225786590 hasConceptScore W4225786590C62649853 @default.
- W4225786590 hasFunder F4320320879 @default.