Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225796887> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4225796887 abstract "Automated image processing algorithms can improve the quality, efficiency, and consistency of classifying the morphology of heterogeneous carbonate rock and can deal with a massive amount of data and images seamlessly. Geoscientists face difficulties in setting the direction of the optimum method for determining petrophysical properties from rock images, Micro-Computed Tomography (uCT), or Magnetic Resonance Imaging (MRI). Most of the successful work is from the homogeneous rocks focusing on 2D images with less focus on 3D and requiring numerical simulation. Currently, image analysis methods converge to three approaches: image processing, artificial intelligence, and combined image processing with artificial intelligence. In this work, we propose two methods to determine the porosity from 3D uCT and MRI images: an image processing method with Image Resolution Optimized Gaussian Algorithm (IROGA); advanced image recognition method enabled by Machine Learning Difference of Gaussian Random Forest (MLDGRF). We have built reference 3D micro models and collected images for calibration of IROGA and MLDGRF methods. To evaluate the predictive capability of these calibrated approaches, we ran them on 3D uCT and MRI images of natural heterogeneous carbonate rock. We measured the porosity and lithology of the carbonate rock using three and two industry-standard ways, respectively, as reference values. Notably, IROGA and MLDGRF have produced porosity results with an accuracy of 96.2% and 97.1% on the training set and 91.7% and 94.4% on blind test validation, respectively, in comparison with the three experimental measurements. We measured limestone and pyrite reference values using two methods, X-ray powder diffraction, and grain density measurements. MLDGRF has produced lithology (limestone and Pyrite) volumes with 97.7% accuracy." @default.
- W4225796887 created "2022-05-05" @default.
- W4225796887 creator A5002144095 @default.
- W4225796887 creator A5041528294 @default.
- W4225796887 creator A5044328711 @default.
- W4225796887 creator A5045072712 @default.
- W4225796887 creator A5051624923 @default.
- W4225796887 creator A5052828423 @default.
- W4225796887 date "2021-11-08" @default.
- W4225796887 modified "2023-09-26" @default.
- W4225796887 title "Machine Learning Guided 3D Image Recognition for Carbonate Pore and Mineral Volumes Determination" @default.
- W4225796887 doi "https://doi.org/10.48550/arxiv.2111.04612" @default.
- W4225796887 hasPublicationYear "2021" @default.
- W4225796887 type Work @default.
- W4225796887 citedByCount "0" @default.
- W4225796887 crossrefType "posted-content" @default.
- W4225796887 hasAuthorship W4225796887A5002144095 @default.
- W4225796887 hasAuthorship W4225796887A5041528294 @default.
- W4225796887 hasAuthorship W4225796887A5044328711 @default.
- W4225796887 hasAuthorship W4225796887A5045072712 @default.
- W4225796887 hasAuthorship W4225796887A5051624923 @default.
- W4225796887 hasAuthorship W4225796887A5052828423 @default.
- W4225796887 hasBestOaLocation W42257968871 @default.
- W4225796887 hasConcept C105795698 @default.
- W4225796887 hasConcept C115961682 @default.
- W4225796887 hasConcept C127313418 @default.
- W4225796887 hasConcept C153180895 @default.
- W4225796887 hasConcept C154945302 @default.
- W4225796887 hasConcept C165838908 @default.
- W4225796887 hasConcept C187320778 @default.
- W4225796887 hasConcept C191897082 @default.
- W4225796887 hasConcept C192562407 @default.
- W4225796887 hasConcept C199289684 @default.
- W4225796887 hasConcept C2780659211 @default.
- W4225796887 hasConcept C33923547 @default.
- W4225796887 hasConcept C41008148 @default.
- W4225796887 hasConcept C46293882 @default.
- W4225796887 hasConcept C6648577 @default.
- W4225796887 hasConcept C9417928 @default.
- W4225796887 hasConceptScore W4225796887C105795698 @default.
- W4225796887 hasConceptScore W4225796887C115961682 @default.
- W4225796887 hasConceptScore W4225796887C127313418 @default.
- W4225796887 hasConceptScore W4225796887C153180895 @default.
- W4225796887 hasConceptScore W4225796887C154945302 @default.
- W4225796887 hasConceptScore W4225796887C165838908 @default.
- W4225796887 hasConceptScore W4225796887C187320778 @default.
- W4225796887 hasConceptScore W4225796887C191897082 @default.
- W4225796887 hasConceptScore W4225796887C192562407 @default.
- W4225796887 hasConceptScore W4225796887C199289684 @default.
- W4225796887 hasConceptScore W4225796887C2780659211 @default.
- W4225796887 hasConceptScore W4225796887C33923547 @default.
- W4225796887 hasConceptScore W4225796887C41008148 @default.
- W4225796887 hasConceptScore W4225796887C46293882 @default.
- W4225796887 hasConceptScore W4225796887C6648577 @default.
- W4225796887 hasConceptScore W4225796887C9417928 @default.
- W4225796887 hasLocation W42257968871 @default.
- W4225796887 hasOpenAccess W4225796887 @default.
- W4225796887 hasPrimaryLocation W42257968871 @default.
- W4225796887 hasRelatedWork W1525514112 @default.
- W4225796887 hasRelatedWork W1864509354 @default.
- W4225796887 hasRelatedWork W2019427146 @default.
- W4225796887 hasRelatedWork W2056345100 @default.
- W4225796887 hasRelatedWork W2090984084 @default.
- W4225796887 hasRelatedWork W2115766022 @default.
- W4225796887 hasRelatedWork W2116466352 @default.
- W4225796887 hasRelatedWork W2204571976 @default.
- W4225796887 hasRelatedWork W2807722375 @default.
- W4225796887 hasRelatedWork W4293428367 @default.
- W4225796887 isParatext "false" @default.
- W4225796887 isRetracted "false" @default.
- W4225796887 workType "article" @default.