Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225808791> ?p ?o ?g. }
- W4225808791 endingPage "16" @default.
- W4225808791 startingPage "1" @default.
- W4225808791 abstract "This article tries to answer the two questions of bearings’ remaining useful life (RUL) prediction with deep transfer learning: what bearing data in the source domain contribute more to transfer learning and how to quantify such contribution? From the perspective of sample-based interpretability, this article proposes a new deep transfer learning approach of RUL prediction. First, a new time series clustering algorithm based on multiscale degradation similarity is proposed. Comprehensively considering the geometry and tendency characteristics of degradation sequences, this algorithm can divide the source domain into multiple subsource domains. Second, a significance metric, named transfer domain validity index (T-DVI), is built to quantify the contribution of each subsource domain to transfer learning in terms of degradation similarity. Furthermore, a new stacked long short-term memory model with selective transfer learning is constructed. Running with the obtained T-DVIs, this model builds two new transfer strategies of weighted initialization and adaptive freezing to improve the transfer effect of degradation knowledge for RUL prediction. Experimental results on the two bearing datasets prove the effectiveness of the proposed approach. More importantly, the proposed approach makes the transfer learning process interpretable via identifying the significance of the bearings data, which helps transfer useful degradation knowledge and improve the RUL prediction performance as well." @default.
- W4225808791 created "2022-05-05" @default.
- W4225808791 creator A5033586311 @default.
- W4225808791 creator A5035282947 @default.
- W4225808791 creator A5057512648 @default.
- W4225808791 creator A5078476204 @default.
- W4225808791 date "2022-01-01" @default.
- W4225808791 modified "2023-10-16" @default.
- W4225808791 title "An Interpretable Deep Transfer Learning-Based Remaining Useful Life Prediction Approach for Bearings With Selective Degradation Knowledge Fusion" @default.
- W4225808791 cites W1534304300 @default.
- W4225808791 cites W2053443947 @default.
- W4225808791 cites W2104068492 @default.
- W4225808791 cites W2115403315 @default.
- W4225808791 cites W2165700458 @default.
- W4225808791 cites W2344741583 @default.
- W4225808791 cites W2612904117 @default.
- W4225808791 cites W2737617578 @default.
- W4225808791 cites W2764024122 @default.
- W4225808791 cites W2799972844 @default.
- W4225808791 cites W2808622270 @default.
- W4225808791 cites W2900529838 @default.
- W4225808791 cites W2902443160 @default.
- W4225808791 cites W2904172802 @default.
- W4225808791 cites W2904460913 @default.
- W4225808791 cites W2909962776 @default.
- W4225808791 cites W2927893014 @default.
- W4225808791 cites W2949666355 @default.
- W4225808791 cites W2963749936 @default.
- W4225808791 cites W2969736276 @default.
- W4225808791 cites W2970677506 @default.
- W4225808791 cites W2975761873 @default.
- W4225808791 cites W2983199727 @default.
- W4225808791 cites W2996451395 @default.
- W4225808791 cites W2998227980 @default.
- W4225808791 cites W2999342951 @default.
- W4225808791 cites W3006585575 @default.
- W4225808791 cites W3045857695 @default.
- W4225808791 cites W3093719170 @default.
- W4225808791 cites W3100533721 @default.
- W4225808791 cites W3126725177 @default.
- W4225808791 cites W3128151922 @default.
- W4225808791 cites W3129604848 @default.
- W4225808791 cites W3156717587 @default.
- W4225808791 cites W3159802296 @default.
- W4225808791 cites W3181646358 @default.
- W4225808791 cites W3205709663 @default.
- W4225808791 doi "https://doi.org/10.1109/tim.2022.3159010" @default.
- W4225808791 hasPublicationYear "2022" @default.
- W4225808791 type Work @default.
- W4225808791 citedByCount "12" @default.
- W4225808791 countsByYear W42258087912022 @default.
- W4225808791 countsByYear W42258087912023 @default.
- W4225808791 crossrefType "journal-article" @default.
- W4225808791 hasAuthorship W4225808791A5033586311 @default.
- W4225808791 hasAuthorship W4225808791A5035282947 @default.
- W4225808791 hasAuthorship W4225808791A5057512648 @default.
- W4225808791 hasAuthorship W4225808791A5078476204 @default.
- W4225808791 hasConcept C103278499 @default.
- W4225808791 hasConcept C108583219 @default.
- W4225808791 hasConcept C111919701 @default.
- W4225808791 hasConcept C114466953 @default.
- W4225808791 hasConcept C115961682 @default.
- W4225808791 hasConcept C119857082 @default.
- W4225808791 hasConcept C124101348 @default.
- W4225808791 hasConcept C127413603 @default.
- W4225808791 hasConcept C134306372 @default.
- W4225808791 hasConcept C150899416 @default.
- W4225808791 hasConcept C153180895 @default.
- W4225808791 hasConcept C154945302 @default.
- W4225808791 hasConcept C176217482 @default.
- W4225808791 hasConcept C199360897 @default.
- W4225808791 hasConcept C207685749 @default.
- W4225808791 hasConcept C21547014 @default.
- W4225808791 hasConcept C2776960227 @default.
- W4225808791 hasConcept C2779679103 @default.
- W4225808791 hasConcept C2781067378 @default.
- W4225808791 hasConcept C33923547 @default.
- W4225808791 hasConcept C36503486 @default.
- W4225808791 hasConcept C41008148 @default.
- W4225808791 hasConcept C56739046 @default.
- W4225808791 hasConcept C76155785 @default.
- W4225808791 hasConcept C98045186 @default.
- W4225808791 hasConceptScore W4225808791C103278499 @default.
- W4225808791 hasConceptScore W4225808791C108583219 @default.
- W4225808791 hasConceptScore W4225808791C111919701 @default.
- W4225808791 hasConceptScore W4225808791C114466953 @default.
- W4225808791 hasConceptScore W4225808791C115961682 @default.
- W4225808791 hasConceptScore W4225808791C119857082 @default.
- W4225808791 hasConceptScore W4225808791C124101348 @default.
- W4225808791 hasConceptScore W4225808791C127413603 @default.
- W4225808791 hasConceptScore W4225808791C134306372 @default.
- W4225808791 hasConceptScore W4225808791C150899416 @default.
- W4225808791 hasConceptScore W4225808791C153180895 @default.
- W4225808791 hasConceptScore W4225808791C154945302 @default.
- W4225808791 hasConceptScore W4225808791C176217482 @default.
- W4225808791 hasConceptScore W4225808791C199360897 @default.
- W4225808791 hasConceptScore W4225808791C207685749 @default.
- W4225808791 hasConceptScore W4225808791C21547014 @default.