Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225823739> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4225823739 abstract "<sec> <title>BACKGROUND</title> Patients hospitalized for a given condition may be receiving other treatments for other contemporary conditions or comorbidities. The use of such observational clinical data for pharmacological hypothesis generation is appealing in the context of an emerging disease but particularly challenging due to the presence of drug indication bias. </sec> <sec> <title>OBJECTIVE</title> With this study, our main objective was the development and validation of a fully data-driven pipeline that would address this challenge. Our secondary objective was to generate pharmacological hypotheses in patients with COVID-19 and demonstrate the clinical relevance of the pipeline. </sec> <sec> <title>METHODS</title> We developed a pharmacopeia-wide association study (PharmWAS) pipeline inspired from the PheWAS methodology, which systematically screens for associations between the whole pharmacopeia and a clinical phenotype. First, a fully data-driven procedure based on adaptive least absolute shrinkage and selection operator (LASSO) determined drug-specific adjustment sets. Second, we computed several measures of association, including robust methods based on propensity scores (PSs) to control indication bias. Finally, we applied the Benjamini and Hochberg procedure of the false discovery rate (FDR). We applied this method in a multicenter retrospective cohort study using electronic medical records from 16 university hospitals of the Greater Paris area. We included all adult patients between 18 and 95 years old hospitalized in conventional wards for COVID-19 between February 1, 2020, and June 15, 2021. We investigated the association between drug prescription within 48 hours from admission and 28-day mortality. We validated our data-driven pipeline against a knowledge-based pipeline on 3 treatments of reference, for which experts agreed on the expected association with mortality. We then demonstrated its clinical relevance by screening all drugs prescribed in more than 100 patients to generate pharmacological hypotheses. </sec> <sec> <title>RESULTS</title> A total of 5783 patients were included in the analysis. The median age at admission was 69.2 (IQR 56.7-81.1) years, and 3390 (58.62%) of the patients were male. The performance of our automated pipeline was comparable or better for controlling bias than the knowledge-based adjustment set for 3 reference drugs: dexamethasone, phloroglucinol, and paracetamol. After correction for multiple testing, 4 drugs were associated with increased in-hospital mortality. Among these, diazepam and tramadol were the only ones not discarded by automated diagnostics, with adjusted odds ratios of 2.51 (95% CI 1.52-4.16, <i>Q</i>=.1) and 1.94 (95% CI 1.32-2.85, <i>Q</i>=.02), respectively. </sec> <sec> <title>CONCLUSIONS</title> Our innovative approach proved useful in generating pharmacological hypotheses in an outbreak setting, without requiring a priori knowledge of the disease. Our systematic analysis of early prescribed treatments from patients hospitalized for COVID-19 showed that diazepam and tramadol are associated with increased 28-day mortality. Whether these drugs could worsen COVID-19 needs to be further assessed. </sec>" @default.
- W4225823739 created "2022-05-05" @default.
- W4225823739 creator A5002976747 @default.
- W4225823739 creator A5007065847 @default.
- W4225823739 creator A5037397269 @default.
- W4225823739 creator A5039181362 @default.
- W4225823739 creator A5044332540 @default.
- W4225823739 creator A5048846086 @default.
- W4225823739 creator A5069383408 @default.
- W4225823739 date "2021-11-25" @default.
- W4225823739 modified "2023-09-26" @default.
- W4225823739 title "Mining Electronic Health Records for Drugs Associated With 28-day Mortality in COVID-19: Pharmacopoeia-wide Association Study (PharmWAS) (Preprint)" @default.
- W4225823739 cites W2020925091 @default.
- W4225823739 cites W2077189932 @default.
- W4225823739 cites W2097360283 @default.
- W4225823739 cites W2111635289 @default.
- W4225823739 cites W2115098571 @default.
- W4225823739 cites W2152849583 @default.
- W4225823739 cites W2168458505 @default.
- W4225823739 cites W2313923699 @default.
- W4225823739 cites W2891381594 @default.
- W4225823739 cites W2900005637 @default.
- W4225823739 cites W2947827021 @default.
- W4225823739 cites W3020646040 @default.
- W4225823739 cites W3021000736 @default.
- W4225823739 cites W3089167000 @default.
- W4225823739 cites W3109202236 @default.
- W4225823739 cites W3113564104 @default.
- W4225823739 cites W3132855917 @default.
- W4225823739 cites W3135837463 @default.
- W4225823739 cites W3184265660 @default.
- W4225823739 cites W4247596625 @default.
- W4225823739 doi "https://doi.org/10.2196/preprints.35190" @default.
- W4225823739 hasPublicationYear "2021" @default.
- W4225823739 type Work @default.
- W4225823739 citedByCount "0" @default.
- W4225823739 crossrefType "posted-content" @default.
- W4225823739 hasAuthorship W4225823739A5002976747 @default.
- W4225823739 hasAuthorship W4225823739A5007065847 @default.
- W4225823739 hasAuthorship W4225823739A5037397269 @default.
- W4225823739 hasAuthorship W4225823739A5039181362 @default.
- W4225823739 hasAuthorship W4225823739A5044332540 @default.
- W4225823739 hasAuthorship W4225823739A5048846086 @default.
- W4225823739 hasAuthorship W4225823739A5069383408 @default.
- W4225823739 hasBestOaLocation W42258237392 @default.
- W4225823739 hasConcept C126322002 @default.
- W4225823739 hasConcept C151730666 @default.
- W4225823739 hasConcept C17923572 @default.
- W4225823739 hasConcept C23131810 @default.
- W4225823739 hasConcept C2426938 @default.
- W4225823739 hasConcept C2779343474 @default.
- W4225823739 hasConcept C71924100 @default.
- W4225823739 hasConcept C86803240 @default.
- W4225823739 hasConcept C98274493 @default.
- W4225823739 hasConceptScore W4225823739C126322002 @default.
- W4225823739 hasConceptScore W4225823739C151730666 @default.
- W4225823739 hasConceptScore W4225823739C17923572 @default.
- W4225823739 hasConceptScore W4225823739C23131810 @default.
- W4225823739 hasConceptScore W4225823739C2426938 @default.
- W4225823739 hasConceptScore W4225823739C2779343474 @default.
- W4225823739 hasConceptScore W4225823739C71924100 @default.
- W4225823739 hasConceptScore W4225823739C86803240 @default.
- W4225823739 hasConceptScore W4225823739C98274493 @default.
- W4225823739 hasLocation W42258237391 @default.
- W4225823739 hasLocation W42258237392 @default.
- W4225823739 hasOpenAccess W4225823739 @default.
- W4225823739 hasPrimaryLocation W42258237391 @default.
- W4225823739 hasRelatedWork W2974177 @default.
- W4225823739 hasRelatedWork W350499 @default.
- W4225823739 hasRelatedWork W3601084 @default.
- W4225823739 hasRelatedWork W401238 @default.
- W4225823739 hasRelatedWork W4081494 @default.
- W4225823739 hasRelatedWork W464464 @default.
- W4225823739 hasRelatedWork W4878720 @default.
- W4225823739 hasRelatedWork W492395 @default.
- W4225823739 hasRelatedWork W5062092 @default.
- W4225823739 hasRelatedWork W5105715 @default.
- W4225823739 isParatext "false" @default.
- W4225823739 isRetracted "false" @default.
- W4225823739 workType "article" @default.