Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225832839> ?p ?o ?g. }
- W4225832839 endingPage "1799" @default.
- W4225832839 startingPage "1779" @default.
- W4225832839 abstract "Abstract. The recent advances in remote sensing provide opportunities for estimating the parameters of conceptual hydrologic models more reliably. However, the question of whether and to what extent the use of satellite data in model calibration may assist in transferring model parameters to ungauged catchments has not been fully resolved. The aim of this study is to evaluate the efficiency of different methods for transferring model parameters obtained by multiple-objective calibrations to ungauged sites and to assess the model performance in terms of runoff, soil moisture, and snow cover predictions relative to existing regionalization approaches. The model parameters are calibrated to daily runoff, satellite soil moisture (Advanced Scatterometer – ASCAT), and snow cover (Moderate Resolution Imaging Spectroradiometer – MODIS) data. The assessment is based on 213 catchments situated in different physiographic and climate zones of Austria. For the transfer of model parameters, eight methods (global and local variants of arithmetic mean, regression, spatial proximity, and similarity) are examined in two periods, i.e., the period in which the model is calibrated (2000–2010) and an independent validation period (2010–2014). The predictive accuracy is evaluated by the leave-one-out cross-validation. The results show that the method by which the model is calibrated in the gauged catchment has a larger impact on runoff prediction accuracy in the ungauged catchments than the choice of the parameter transfer method. The best transfer methods are global and local similarity and the kriging approach. The performance of the transfer methods differs between lowland and alpine catchments. While the soil moisture and snow cover prediction efficiencies are higher in lowland catchments, the runoff prediction efficiency is higher in alpine catchments. A comparison of the model transfer methods, based on parameters calibrated to runoff, snow cover, and soil moisture with those based on parameters calibrated to runoff, only indicates that the former outperforms the latter in terms of simulating soil moisture and snow cover. The performance of simulating runoff is similar, and the accuracy depends mainly on the weight given to the runoff objective in the multiple-objective calibrations." @default.
- W4225832839 created "2022-05-05" @default.
- W4225832839 creator A5015678021 @default.
- W4225832839 creator A5030458892 @default.
- W4225832839 creator A5057347148 @default.
- W4225832839 creator A5061832135 @default.
- W4225832839 creator A5069050731 @default.
- W4225832839 creator A5069959056 @default.
- W4225832839 creator A5073589992 @default.
- W4225832839 creator A5089601683 @default.
- W4225832839 date "2022-04-07" @default.
- W4225832839 modified "2023-10-14" @default.
- W4225832839 title "The value of satellite soil moisture and snow cover data for the transfer of hydrological model parameters to ungauged sites" @default.
- W4225832839 cites W1502378849 @default.
- W4225832839 cites W1539229456 @default.
- W4225832839 cites W1744528052 @default.
- W4225832839 cites W1971630806 @default.
- W4225832839 cites W2005130804 @default.
- W4225832839 cites W2009673657 @default.
- W4225832839 cites W2010524556 @default.
- W4225832839 cites W2010827066 @default.
- W4225832839 cites W2011106705 @default.
- W4225832839 cites W2018886760 @default.
- W4225832839 cites W2033904036 @default.
- W4225832839 cites W2040325895 @default.
- W4225832839 cites W2061688579 @default.
- W4225832839 cites W2067223893 @default.
- W4225832839 cites W2068410395 @default.
- W4225832839 cites W2070086504 @default.
- W4225832839 cites W2074843389 @default.
- W4225832839 cites W2080663696 @default.
- W4225832839 cites W2091672725 @default.
- W4225832839 cites W2091960994 @default.
- W4225832839 cites W2117417893 @default.
- W4225832839 cites W2123744475 @default.
- W4225832839 cites W2126658193 @default.
- W4225832839 cites W2127510738 @default.
- W4225832839 cites W2154331418 @default.
- W4225832839 cites W2154797707 @default.
- W4225832839 cites W2156932922 @default.
- W4225832839 cites W2165201237 @default.
- W4225832839 cites W2168186402 @default.
- W4225832839 cites W2190873760 @default.
- W4225832839 cites W2407078068 @default.
- W4225832839 cites W2593930412 @default.
- W4225832839 cites W2612734727 @default.
- W4225832839 cites W2772147559 @default.
- W4225832839 cites W2795085501 @default.
- W4225832839 cites W2883475339 @default.
- W4225832839 cites W2893845341 @default.
- W4225832839 cites W2901721818 @default.
- W4225832839 cites W2951276077 @default.
- W4225832839 cites W2984259720 @default.
- W4225832839 cites W2997699993 @default.
- W4225832839 cites W3000372487 @default.
- W4225832839 cites W3003925188 @default.
- W4225832839 cites W3006126867 @default.
- W4225832839 cites W3006968491 @default.
- W4225832839 cites W3023123623 @default.
- W4225832839 cites W3023439803 @default.
- W4225832839 cites W3024660697 @default.
- W4225832839 cites W3027237079 @default.
- W4225832839 cites W3045596914 @default.
- W4225832839 cites W3048654665 @default.
- W4225832839 cites W3082683336 @default.
- W4225832839 cites W3087088004 @default.
- W4225832839 cites W3087241506 @default.
- W4225832839 cites W3088602037 @default.
- W4225832839 cites W3094518900 @default.
- W4225832839 cites W3114969053 @default.
- W4225832839 cites W3157083945 @default.
- W4225832839 cites W3179304361 @default.
- W4225832839 cites W566720969 @default.
- W4225832839 doi "https://doi.org/10.5194/hess-26-1779-2022" @default.
- W4225832839 hasPublicationYear "2022" @default.
- W4225832839 type Work @default.
- W4225832839 citedByCount "0" @default.
- W4225832839 crossrefType "journal-article" @default.
- W4225832839 hasAuthorship W4225832839A5015678021 @default.
- W4225832839 hasAuthorship W4225832839A5030458892 @default.
- W4225832839 hasAuthorship W4225832839A5057347148 @default.
- W4225832839 hasAuthorship W4225832839A5061832135 @default.
- W4225832839 hasAuthorship W4225832839A5069050731 @default.
- W4225832839 hasAuthorship W4225832839A5069959056 @default.
- W4225832839 hasAuthorship W4225832839A5073589992 @default.
- W4225832839 hasAuthorship W4225832839A5089601683 @default.
- W4225832839 hasBestOaLocation W42258328391 @default.
- W4225832839 hasConcept C105795698 @default.
- W4225832839 hasConcept C126197015 @default.
- W4225832839 hasConcept C127313418 @default.
- W4225832839 hasConcept C127413603 @default.
- W4225832839 hasConcept C146978453 @default.
- W4225832839 hasConcept C153294291 @default.
- W4225832839 hasConcept C161067210 @default.
- W4225832839 hasConcept C165838908 @default.
- W4225832839 hasConcept C187320778 @default.
- W4225832839 hasConcept C18903297 @default.
- W4225832839 hasConcept C19269812 @default.