Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225856469> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4225856469 endingPage "455" @default.
- W4225856469 startingPage "444" @default.
- W4225856469 abstract "AbstractIn the era of big data analytics, prediction of various deceases with the help data science methods is common among researchers. Although applying tools and using eco-system which is the integration of various sciences and technology is tough for many. Researcher belief that human brain is the most advance machine with all king of tools, technologies and reasoning exist. Visual analytics is the most simple and effective means to detect and prevent any deceases. In this research, authors used story telling methods based on visual analytics to explore different conflicts exist in the data set. In this research, researcher found that average age of detection of breast cancer is 45 to 49 in most of the cases and data sets. But by seeing different conflicts in the data as well as patterns of classification, we can able to predict and detect breast cancer much earlier based on visual analytics and storytelling method. Conflicts in the data shows variation in the usual patterns and this leads to the different problems in subject. Detection and prediction of diseases like breast cancer is most effect in this era of medical science. Based on the conflicting pattern in the data, authors build story and tried to give resolution of the problem in terms of early detection and prevention of breast cancer.KeywordsBreast cancerPredictive analyticsConflicts in patternStorytelling methodFractal theory" @default.
- W4225856469 created "2022-05-05" @default.
- W4225856469 creator A5007603905 @default.
- W4225856469 creator A5041738542 @default.
- W4225856469 creator A5082091356 @default.
- W4225856469 date "2022-01-01" @default.
- W4225856469 modified "2023-10-17" @default.
- W4225856469 title "Breast Cancer Detection and Prediction Based on Conflicts in Fractal Patterns" @default.
- W4225856469 cites W1983024255 @default.
- W4225856469 cites W2102083998 @default.
- W4225856469 cites W2108009806 @default.
- W4225856469 cites W2132048066 @default.
- W4225856469 cites W2169388041 @default.
- W4225856469 cites W2284497682 @default.
- W4225856469 cites W2370924594 @default.
- W4225856469 cites W2417673889 @default.
- W4225856469 cites W2579213716 @default.
- W4225856469 cites W2790953907 @default.
- W4225856469 cites W2800002784 @default.
- W4225856469 cites W2952523812 @default.
- W4225856469 cites W2966483024 @default.
- W4225856469 cites W3192950629 @default.
- W4225856469 cites W3199623487 @default.
- W4225856469 cites W4211052646 @default.
- W4225856469 doi "https://doi.org/10.1007/978-981-19-1677-9_40" @default.
- W4225856469 hasPublicationYear "2022" @default.
- W4225856469 type Work @default.
- W4225856469 citedByCount "0" @default.
- W4225856469 crossrefType "book-chapter" @default.
- W4225856469 hasAuthorship W4225856469A5007603905 @default.
- W4225856469 hasAuthorship W4225856469A5041738542 @default.
- W4225856469 hasAuthorship W4225856469A5082091356 @default.
- W4225856469 hasConcept C119857082 @default.
- W4225856469 hasConcept C121608353 @default.
- W4225856469 hasConcept C124101348 @default.
- W4225856469 hasConcept C126322002 @default.
- W4225856469 hasConcept C154945302 @default.
- W4225856469 hasConcept C175801342 @default.
- W4225856469 hasConcept C177264268 @default.
- W4225856469 hasConcept C199360897 @default.
- W4225856469 hasConcept C2522767166 @default.
- W4225856469 hasConcept C36464697 @default.
- W4225856469 hasConcept C41008148 @default.
- W4225856469 hasConcept C530470458 @default.
- W4225856469 hasConcept C59732488 @default.
- W4225856469 hasConcept C71924100 @default.
- W4225856469 hasConcept C75684735 @default.
- W4225856469 hasConcept C79158427 @default.
- W4225856469 hasConceptScore W4225856469C119857082 @default.
- W4225856469 hasConceptScore W4225856469C121608353 @default.
- W4225856469 hasConceptScore W4225856469C124101348 @default.
- W4225856469 hasConceptScore W4225856469C126322002 @default.
- W4225856469 hasConceptScore W4225856469C154945302 @default.
- W4225856469 hasConceptScore W4225856469C175801342 @default.
- W4225856469 hasConceptScore W4225856469C177264268 @default.
- W4225856469 hasConceptScore W4225856469C199360897 @default.
- W4225856469 hasConceptScore W4225856469C2522767166 @default.
- W4225856469 hasConceptScore W4225856469C36464697 @default.
- W4225856469 hasConceptScore W4225856469C41008148 @default.
- W4225856469 hasConceptScore W4225856469C530470458 @default.
- W4225856469 hasConceptScore W4225856469C59732488 @default.
- W4225856469 hasConceptScore W4225856469C71924100 @default.
- W4225856469 hasConceptScore W4225856469C75684735 @default.
- W4225856469 hasConceptScore W4225856469C79158427 @default.
- W4225856469 hasLocation W42258564691 @default.
- W4225856469 hasOpenAccess W4225856469 @default.
- W4225856469 hasPrimaryLocation W42258564691 @default.
- W4225856469 hasRelatedWork W2018276586 @default.
- W4225856469 hasRelatedWork W2148525144 @default.
- W4225856469 hasRelatedWork W2181693928 @default.
- W4225856469 hasRelatedWork W2243065871 @default.
- W4225856469 hasRelatedWork W2564956852 @default.
- W4225856469 hasRelatedWork W2911982569 @default.
- W4225856469 hasRelatedWork W2981828859 @default.
- W4225856469 hasRelatedWork W2996464640 @default.
- W4225856469 hasRelatedWork W3030243522 @default.
- W4225856469 hasRelatedWork W4283652826 @default.
- W4225856469 isParatext "false" @default.
- W4225856469 isRetracted "false" @default.
- W4225856469 workType "book-chapter" @default.