Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225864208> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4225864208 endingPage "303" @default.
- W4225864208 startingPage "281" @default.
- W4225864208 abstract "Structural health monitoring (SHM) plays a significant role in smart city for providing information regarding the performance of structures throughout their life spans. Defect/damage diagnosis is a crucial theme discussed in SHM systems. Recent advances in deep neural networks present encouraging evidence in data diagnosis for a wide range of SHM. However, one of the key limitations in this approach lies in the robustness and scalability with respect to data scarcity, because massive data collection for deep neural network training can expensive in a smart city. This chapter provides machine learning-based sensing and data processing strategies specialized for the next-generation SHM which considers the challenges of the structures and monitoring systems. In this respect, integrated frameworks based on deep learning and transfer learning as well as data-centric techniques are proposed to perform a sustainable, cost-effective, and reliable defect diagnosis of structural systems. The efficacy and robustness of this method are demonstrated on defect diagnosis of full-scale prefabricated concrete shear wall structures with different levels of data scarcity: dynamic responses collected using sensor network embedded on the structures are used, from which defect features can be extracted automatically, thus making structural defect diagnosis more efficient. At the same time, experimental results demonstrate that this approach can in general improve the diagnosis models on the dataset with limited samples." @default.
- W4225864208 created "2022-05-05" @default.
- W4225864208 creator A5007835058 @default.
- W4225864208 creator A5019959663 @default.
- W4225864208 creator A5057339325 @default.
- W4225864208 date "2022-01-01" @default.
- W4225864208 modified "2023-10-16" @default.
- W4225864208 title "Deep learning for vibration-based data-driven defect diagnosis of structural systems" @default.
- W4225864208 cites W1978657852 @default.
- W4225864208 cites W2147800946 @default.
- W4225864208 cites W2395579298 @default.
- W4225864208 cites W2556345765 @default.
- W4225864208 cites W2737404945 @default.
- W4225864208 cites W2767522444 @default.
- W4225864208 cites W2791957585 @default.
- W4225864208 cites W2801492038 @default.
- W4225864208 cites W2805994833 @default.
- W4225864208 cites W2909645133 @default.
- W4225864208 cites W2917014261 @default.
- W4225864208 cites W2942829333 @default.
- W4225864208 cites W2969930993 @default.
- W4225864208 cites W2970362668 @default.
- W4225864208 cites W2997000545 @default.
- W4225864208 cites W3001837669 @default.
- W4225864208 cites W3083003133 @default.
- W4225864208 cites W3095243560 @default.
- W4225864208 cites W3126232929 @default.
- W4225864208 cites W745759354 @default.
- W4225864208 doi "https://doi.org/10.1016/b978-0-12-817784-6.00018-7" @default.
- W4225864208 hasPublicationYear "2022" @default.
- W4225864208 type Work @default.
- W4225864208 citedByCount "0" @default.
- W4225864208 crossrefType "book-chapter" @default.
- W4225864208 hasAuthorship W4225864208A5007835058 @default.
- W4225864208 hasAuthorship W4225864208A5019959663 @default.
- W4225864208 hasAuthorship W4225864208A5057339325 @default.
- W4225864208 hasConcept C104317684 @default.
- W4225864208 hasConcept C105795698 @default.
- W4225864208 hasConcept C108583219 @default.
- W4225864208 hasConcept C109747225 @default.
- W4225864208 hasConcept C119857082 @default.
- W4225864208 hasConcept C120314980 @default.
- W4225864208 hasConcept C124101348 @default.
- W4225864208 hasConcept C127413603 @default.
- W4225864208 hasConcept C133462117 @default.
- W4225864208 hasConcept C154945302 @default.
- W4225864208 hasConcept C162324750 @default.
- W4225864208 hasConcept C175444787 @default.
- W4225864208 hasConcept C185592680 @default.
- W4225864208 hasConcept C2776247918 @default.
- W4225864208 hasConcept C33923547 @default.
- W4225864208 hasConcept C41008148 @default.
- W4225864208 hasConcept C48044578 @default.
- W4225864208 hasConcept C50644808 @default.
- W4225864208 hasConcept C55493867 @default.
- W4225864208 hasConcept C63479239 @default.
- W4225864208 hasConcept C66938386 @default.
- W4225864208 hasConcept C77088390 @default.
- W4225864208 hasConceptScore W4225864208C104317684 @default.
- W4225864208 hasConceptScore W4225864208C105795698 @default.
- W4225864208 hasConceptScore W4225864208C108583219 @default.
- W4225864208 hasConceptScore W4225864208C109747225 @default.
- W4225864208 hasConceptScore W4225864208C119857082 @default.
- W4225864208 hasConceptScore W4225864208C120314980 @default.
- W4225864208 hasConceptScore W4225864208C124101348 @default.
- W4225864208 hasConceptScore W4225864208C127413603 @default.
- W4225864208 hasConceptScore W4225864208C133462117 @default.
- W4225864208 hasConceptScore W4225864208C154945302 @default.
- W4225864208 hasConceptScore W4225864208C162324750 @default.
- W4225864208 hasConceptScore W4225864208C175444787 @default.
- W4225864208 hasConceptScore W4225864208C185592680 @default.
- W4225864208 hasConceptScore W4225864208C2776247918 @default.
- W4225864208 hasConceptScore W4225864208C33923547 @default.
- W4225864208 hasConceptScore W4225864208C41008148 @default.
- W4225864208 hasConceptScore W4225864208C48044578 @default.
- W4225864208 hasConceptScore W4225864208C50644808 @default.
- W4225864208 hasConceptScore W4225864208C55493867 @default.
- W4225864208 hasConceptScore W4225864208C63479239 @default.
- W4225864208 hasConceptScore W4225864208C66938386 @default.
- W4225864208 hasConceptScore W4225864208C77088390 @default.
- W4225864208 hasLocation W42258642081 @default.
- W4225864208 hasOpenAccess W4225864208 @default.
- W4225864208 hasPrimaryLocation W42258642081 @default.
- W4225864208 hasRelatedWork W1596201972 @default.
- W4225864208 hasRelatedWork W1967954938 @default.
- W4225864208 hasRelatedWork W1986253068 @default.
- W4225864208 hasRelatedWork W2364921833 @default.
- W4225864208 hasRelatedWork W2385146268 @default.
- W4225864208 hasRelatedWork W4223943233 @default.
- W4225864208 hasRelatedWork W4226304637 @default.
- W4225864208 hasRelatedWork W4312200629 @default.
- W4225864208 hasRelatedWork W4360585206 @default.
- W4225864208 hasRelatedWork W4364306694 @default.
- W4225864208 isParatext "false" @default.
- W4225864208 isRetracted "false" @default.
- W4225864208 workType "book-chapter" @default.