Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225877503> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4225877503 endingPage "1117" @default.
- W4225877503 startingPage "1098" @default.
- W4225877503 abstract "Drought occurrence, frequency and severity in the Upper Tana River basin (UTaRB) have critically affected water resource systems. To minimize the undesirable effects of drought, there is a need to quantify and project the drought trend. In this research, the drought was estimated and projected using Standardized Supply-Demand-Water Index (SSDI) and an Artificial Neural Network (ANN). Field meteorological data was used in which interpolated was conducted using kriging interpolation technique within ArcGIS environment. The results indicate those moderate, severe and extreme droughts at varying magnitudes as detected by the SSDI during 1972-2010 at different meteorological stations, with SSDI values equal or less than -2.0. In a spatial domain, the areas in south-eastern parts of the UTaRB exhibit the highest drought severity. Time-series forecasts and projection show that the best networks for SSDI exhibit respective ANNs architecture. The projected extreme droughts (values less than -2.00) and abundant water availability (SSDI values ³ 2.00) were estimated using Recursive Multi-Step Neural Networks (RMSNN). The findings can be integrated into planning the drought-mitigation-adaptation and early-warning systems in the UTaRB." @default.
- W4225877503 created "2022-05-05" @default.
- W4225877503 creator A5087246798 @default.
- W4225877503 date "2022-01-01" @default.
- W4225877503 modified "2023-09-26" @default.
- W4225877503 title "Drought Estimation-and-Projection Using Standardized Supply-Demand-Water Index and Artificial Neural Networks for Upper Tana River Basin in Kenya" @default.
- W4225877503 cites W1981074775 @default.
- W4225877503 cites W1999687643 @default.
- W4225877503 cites W2018109319 @default.
- W4225877503 cites W2064784008 @default.
- W4225877503 cites W2085622134 @default.
- W4225877503 cites W2094923806 @default.
- W4225877503 cites W2108706807 @default.
- W4225877503 cites W2108747251 @default.
- W4225877503 cites W2147746661 @default.
- W4225877503 cites W2283875302 @default.
- W4225877503 cites W2311139032 @default.
- W4225877503 cites W2605464578 @default.
- W4225877503 cites W2620357945 @default.
- W4225877503 cites W2784184607 @default.
- W4225877503 cites W2811461174 @default.
- W4225877503 doi "https://doi.org/10.4018/978-1-6684-2408-7.ch051" @default.
- W4225877503 hasPublicationYear "2022" @default.
- W4225877503 type Work @default.
- W4225877503 citedByCount "0" @default.
- W4225877503 crossrefType "book-chapter" @default.
- W4225877503 hasAuthorship W4225877503A5087246798 @default.
- W4225877503 hasConcept C105795698 @default.
- W4225877503 hasConcept C109007969 @default.
- W4225877503 hasConcept C127313418 @default.
- W4225877503 hasConcept C136764020 @default.
- W4225877503 hasConcept C151730666 @default.
- W4225877503 hasConcept C154945302 @default.
- W4225877503 hasConcept C187320778 @default.
- W4225877503 hasConcept C2777382242 @default.
- W4225877503 hasConcept C33923547 @default.
- W4225877503 hasConcept C39432304 @default.
- W4225877503 hasConcept C41008148 @default.
- W4225877503 hasConcept C50644808 @default.
- W4225877503 hasConcept C524765639 @default.
- W4225877503 hasConcept C76886044 @default.
- W4225877503 hasConcept C81692654 @default.
- W4225877503 hasConceptScore W4225877503C105795698 @default.
- W4225877503 hasConceptScore W4225877503C109007969 @default.
- W4225877503 hasConceptScore W4225877503C127313418 @default.
- W4225877503 hasConceptScore W4225877503C136764020 @default.
- W4225877503 hasConceptScore W4225877503C151730666 @default.
- W4225877503 hasConceptScore W4225877503C154945302 @default.
- W4225877503 hasConceptScore W4225877503C187320778 @default.
- W4225877503 hasConceptScore W4225877503C2777382242 @default.
- W4225877503 hasConceptScore W4225877503C33923547 @default.
- W4225877503 hasConceptScore W4225877503C39432304 @default.
- W4225877503 hasConceptScore W4225877503C41008148 @default.
- W4225877503 hasConceptScore W4225877503C50644808 @default.
- W4225877503 hasConceptScore W4225877503C524765639 @default.
- W4225877503 hasConceptScore W4225877503C76886044 @default.
- W4225877503 hasConceptScore W4225877503C81692654 @default.
- W4225877503 hasLocation W42258775031 @default.
- W4225877503 hasOpenAccess W4225877503 @default.
- W4225877503 hasPrimaryLocation W42258775031 @default.
- W4225877503 hasRelatedWork W2040132547 @default.
- W4225877503 hasRelatedWork W2313453429 @default.
- W4225877503 hasRelatedWork W2364173106 @default.
- W4225877503 hasRelatedWork W2364959589 @default.
- W4225877503 hasRelatedWork W2624354332 @default.
- W4225877503 hasRelatedWork W2737692124 @default.
- W4225877503 hasRelatedWork W2806005244 @default.
- W4225877503 hasRelatedWork W2837262373 @default.
- W4225877503 hasRelatedWork W2946835660 @default.
- W4225877503 hasRelatedWork W2992920499 @default.
- W4225877503 isParatext "false" @default.
- W4225877503 isRetracted "false" @default.
- W4225877503 workType "book-chapter" @default.