Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225906504> ?p ?o ?g. }
- W4225906504 endingPage "e1161" @default.
- W4225906504 startingPage "e1153" @default.
- W4225906504 abstract "We aimed to develop a deep learning-based signature to predict prognosis and benefit from adjuvant chemotherapy using preoperative computed tomography (CT) images.Current staging methods do not accurately predict the risk of disease relapse for patients with gastric cancer.We proposed a novel deep neural network (S-net) to construct a CT signature for predicting disease-free survival (DFS) and overall survival in a training cohort of 457 patients, and independently tested it in an external validation cohort of 1158 patients. An integrated nomogram was constructed to demonstrate the added value of the imaging signature to established clinicopathologic factors for individualized survival prediction. Prediction performance was assessed with respect to discrimination, calibration, and clinical usefulness.The DeLIS was associated with DFS and overall survival in the overall validation cohort and among subgroups defined by clinicopathologic variables, and remained an independent prognostic factor in multivariable analysis (P< 0.001). Integrating the imaging signature and clinicopathologic factors improved prediction performance, with C-indices: 0.792-0.802 versus 0.719-0.724, and net reclassification improvement 10.1%-28.3%. Adjuvant chemotherapy was associated with improved DFS in stage II patients with high-DeLIS [hazard ratio = 0.362 (95% confidence interval 0.149-0.882)] and stage III patients with high- and intermediate-DeLIS [hazard ratio = 0.611 (0.442-0.843); 0.633 (0.433-0.925)]. On the other hand, adjuvant chemotherapy did not affect survival for patients with low-DeLIS, suggesting a predictive effect (Pinteraction = 0.048, 0.016 for DFS in stage II and III disease).The proposed imaging signature improved prognostic prediction and could help identify patients most likely to benefit from adjuvant chemotherapy in gastric cancer." @default.
- W4225906504 created "2022-05-05" @default.
- W4225906504 creator A5006220393 @default.
- W4225906504 creator A5007642188 @default.
- W4225906504 creator A5014830482 @default.
- W4225906504 creator A5024822052 @default.
- W4225906504 creator A5028736883 @default.
- W4225906504 creator A5031098811 @default.
- W4225906504 creator A5036188351 @default.
- W4225906504 creator A5055398648 @default.
- W4225906504 creator A5057138788 @default.
- W4225906504 creator A5068242405 @default.
- W4225906504 creator A5068544203 @default.
- W4225906504 creator A5078584419 @default.
- W4225906504 creator A5091216176 @default.
- W4225906504 date "2020-01-06" @default.
- W4225906504 modified "2023-10-18" @default.
- W4225906504 title "Development and Validation of a Deep Learning CT Signature to Predict Survival and Chemotherapy Benefit in Gastric Cancer" @default.
- W4225906504 cites W1990072751 @default.
- W4225906504 cites W2098719201 @default.
- W4225906504 cites W2133650808 @default.
- W4225906504 cites W2165982376 @default.
- W4225906504 cites W2166339706 @default.
- W4225906504 cites W2266683146 @default.
- W4225906504 cites W2517804208 @default.
- W4225906504 cites W2557738935 @default.
- W4225906504 cites W2562440474 @default.
- W4225906504 cites W2568870981 @default.
- W4225906504 cites W2581082771 @default.
- W4225906504 cites W2616461360 @default.
- W4225906504 cites W2618628231 @default.
- W4225906504 cites W2734865205 @default.
- W4225906504 cites W2753919178 @default.
- W4225906504 cites W2761668583 @default.
- W4225906504 cites W2772723798 @default.
- W4225906504 cites W2789563241 @default.
- W4225906504 cites W2792800692 @default.
- W4225906504 cites W2885326465 @default.
- W4225906504 cites W2896817483 @default.
- W4225906504 cites W2903150666 @default.
- W4225906504 cites W2905810301 @default.
- W4225906504 cites W2905949064 @default.
- W4225906504 cites W2914568698 @default.
- W4225906504 cites W2917837889 @default.
- W4225906504 cites W2919115771 @default.
- W4225906504 cites W2928374940 @default.
- W4225906504 cites W2939853793 @default.
- W4225906504 cites W2946185430 @default.
- W4225906504 doi "https://doi.org/10.1097/sla.0000000000003778" @default.
- W4225906504 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31913871" @default.
- W4225906504 hasPublicationYear "2020" @default.
- W4225906504 type Work @default.
- W4225906504 citedByCount "78" @default.
- W4225906504 countsByYear W42259065042020 @default.
- W4225906504 countsByYear W42259065042021 @default.
- W4225906504 countsByYear W42259065042022 @default.
- W4225906504 countsByYear W42259065042023 @default.
- W4225906504 crossrefType "journal-article" @default.
- W4225906504 hasAuthorship W4225906504A5006220393 @default.
- W4225906504 hasAuthorship W4225906504A5007642188 @default.
- W4225906504 hasAuthorship W4225906504A5014830482 @default.
- W4225906504 hasAuthorship W4225906504A5024822052 @default.
- W4225906504 hasAuthorship W4225906504A5028736883 @default.
- W4225906504 hasAuthorship W4225906504A5031098811 @default.
- W4225906504 hasAuthorship W4225906504A5036188351 @default.
- W4225906504 hasAuthorship W4225906504A5055398648 @default.
- W4225906504 hasAuthorship W4225906504A5057138788 @default.
- W4225906504 hasAuthorship W4225906504A5068242405 @default.
- W4225906504 hasAuthorship W4225906504A5068544203 @default.
- W4225906504 hasAuthorship W4225906504A5078584419 @default.
- W4225906504 hasAuthorship W4225906504A5091216176 @default.
- W4225906504 hasConcept C121608353 @default.
- W4225906504 hasConcept C126322002 @default.
- W4225906504 hasConcept C143998085 @default.
- W4225906504 hasConcept C146357865 @default.
- W4225906504 hasConcept C151730666 @default.
- W4225906504 hasConcept C207103383 @default.
- W4225906504 hasConcept C34626388 @default.
- W4225906504 hasConcept C44249647 @default.
- W4225906504 hasConcept C50382708 @default.
- W4225906504 hasConcept C71924100 @default.
- W4225906504 hasConcept C72563966 @default.
- W4225906504 hasConcept C86803240 @default.
- W4225906504 hasConceptScore W4225906504C121608353 @default.
- W4225906504 hasConceptScore W4225906504C126322002 @default.
- W4225906504 hasConceptScore W4225906504C143998085 @default.
- W4225906504 hasConceptScore W4225906504C146357865 @default.
- W4225906504 hasConceptScore W4225906504C151730666 @default.
- W4225906504 hasConceptScore W4225906504C207103383 @default.
- W4225906504 hasConceptScore W4225906504C34626388 @default.
- W4225906504 hasConceptScore W4225906504C44249647 @default.
- W4225906504 hasConceptScore W4225906504C50382708 @default.
- W4225906504 hasConceptScore W4225906504C71924100 @default.
- W4225906504 hasConceptScore W4225906504C72563966 @default.
- W4225906504 hasConceptScore W4225906504C86803240 @default.
- W4225906504 hasIssue "6" @default.
- W4225906504 hasLocation W42259065041 @default.
- W4225906504 hasLocation W42259065042 @default.