Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225912329> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4225912329 abstract "This study aimed to evaluate the performance of a novel unsupervised deep learning-based framework for automated infections lesion segmentation from CT images of Covid patients. In the first step, two residual networks were independently trained to identify the lung tissue for normal and Covid patients in a supervised manner. These two models, referred to as DL-Covid and DL-Norm for Covid-19 and normal patients, respectively, generate the voxel-wise probability maps for lung tissue identification. To detect Covid lesions, the CT image of the Covid patient is processed by the DL-Covid and DL-Norm models to obtain two lung probability maps. Since the DL-Norm model is not familiar with Covid infections within the lung, this model would assign lower probabilities to the lesions than the DL-Covid. Hence, the probability maps of the Covid infections could be generated through the subtraction of the two lung probability maps obtained from the DL-Covid and DL-Norm models. Manual lesion segmentation of 50 Covid-19 CT images was used to assess the accuracy of the unsupervised lesion segmentation approach. The Dice coefficients of 0.985 and 0.978 were achieved for the lung segmentation of normal and Covid patients in the external validation dataset, respectively. Quantitative results of infection segmentation by the proposed unsupervised method showed the Dice coefficient and Jaccard index of 0.67 and 0.60, respectively. Quantitative evaluation of the proposed unsupervised approach for Covid-19 infectious lesion segmentation showed relatively satisfactory results. Since this framework does not require any annotated dataset, it could be used to generate very large training samples for the supervised machine learning algorithms dedicated to noisy and/or weakly annotated datasets." @default.
- W4225912329 created "2022-05-05" @default.
- W4225912329 creator A5022494441 @default.
- W4225912329 creator A5035177246 @default.
- W4225912329 creator A5039181443 @default.
- W4225912329 creator A5071960083 @default.
- W4225912329 creator A5075292429 @default.
- W4225912329 date "2022-02-24" @default.
- W4225912329 modified "2023-10-16" @default.
- W4225912329 title "A novel unsupervised covid lung lesion segmentation based on the lung tissue identification" @default.
- W4225912329 doi "https://doi.org/10.48550/arxiv.2202.12148" @default.
- W4225912329 hasPublicationYear "2022" @default.
- W4225912329 type Work @default.
- W4225912329 citedByCount "0" @default.
- W4225912329 crossrefType "posted-content" @default.
- W4225912329 hasAuthorship W4225912329A5022494441 @default.
- W4225912329 hasAuthorship W4225912329A5035177246 @default.
- W4225912329 hasAuthorship W4225912329A5039181443 @default.
- W4225912329 hasAuthorship W4225912329A5071960083 @default.
- W4225912329 hasAuthorship W4225912329A5075292429 @default.
- W4225912329 hasBestOaLocation W42259123291 @default.
- W4225912329 hasConcept C105795698 @default.
- W4225912329 hasConcept C124504099 @default.
- W4225912329 hasConcept C126322002 @default.
- W4225912329 hasConcept C142724271 @default.
- W4225912329 hasConcept C153180895 @default.
- W4225912329 hasConcept C154945302 @default.
- W4225912329 hasConcept C163892561 @default.
- W4225912329 hasConcept C17744445 @default.
- W4225912329 hasConcept C191795146 @default.
- W4225912329 hasConcept C199539241 @default.
- W4225912329 hasConcept C203519979 @default.
- W4225912329 hasConcept C22029948 @default.
- W4225912329 hasConcept C2777714996 @default.
- W4225912329 hasConcept C2779134260 @default.
- W4225912329 hasConcept C3008058167 @default.
- W4225912329 hasConcept C33923547 @default.
- W4225912329 hasConcept C41008148 @default.
- W4225912329 hasConcept C524204448 @default.
- W4225912329 hasConcept C54170458 @default.
- W4225912329 hasConcept C71924100 @default.
- W4225912329 hasConcept C89600930 @default.
- W4225912329 hasConceptScore W4225912329C105795698 @default.
- W4225912329 hasConceptScore W4225912329C124504099 @default.
- W4225912329 hasConceptScore W4225912329C126322002 @default.
- W4225912329 hasConceptScore W4225912329C142724271 @default.
- W4225912329 hasConceptScore W4225912329C153180895 @default.
- W4225912329 hasConceptScore W4225912329C154945302 @default.
- W4225912329 hasConceptScore W4225912329C163892561 @default.
- W4225912329 hasConceptScore W4225912329C17744445 @default.
- W4225912329 hasConceptScore W4225912329C191795146 @default.
- W4225912329 hasConceptScore W4225912329C199539241 @default.
- W4225912329 hasConceptScore W4225912329C203519979 @default.
- W4225912329 hasConceptScore W4225912329C22029948 @default.
- W4225912329 hasConceptScore W4225912329C2777714996 @default.
- W4225912329 hasConceptScore W4225912329C2779134260 @default.
- W4225912329 hasConceptScore W4225912329C3008058167 @default.
- W4225912329 hasConceptScore W4225912329C33923547 @default.
- W4225912329 hasConceptScore W4225912329C41008148 @default.
- W4225912329 hasConceptScore W4225912329C524204448 @default.
- W4225912329 hasConceptScore W4225912329C54170458 @default.
- W4225912329 hasConceptScore W4225912329C71924100 @default.
- W4225912329 hasConceptScore W4225912329C89600930 @default.
- W4225912329 hasLocation W42259123291 @default.
- W4225912329 hasOpenAccess W4225912329 @default.
- W4225912329 hasPrimaryLocation W42259123291 @default.
- W4225912329 hasRelatedWork W1573877189 @default.
- W4225912329 hasRelatedWork W2130346638 @default.
- W4225912329 hasRelatedWork W2630229246 @default.
- W4225912329 hasRelatedWork W2914580601 @default.
- W4225912329 hasRelatedWork W2972805928 @default.
- W4225912329 hasRelatedWork W2998885888 @default.
- W4225912329 hasRelatedWork W3012828488 @default.
- W4225912329 hasRelatedWork W3093926553 @default.
- W4225912329 hasRelatedWork W3116883888 @default.
- W4225912329 hasRelatedWork W4287631720 @default.
- W4225912329 isParatext "false" @default.
- W4225912329 isRetracted "false" @default.
- W4225912329 workType "article" @default.