Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225917237> ?p ?o ?g. }
- W4225917237 endingPage "25344" @default.
- W4225917237 startingPage "25335" @default.
- W4225917237 abstract "Road safety is tackled and an intelligent deep learning framework is proposed in this work, which includes outlier detection, vehicle detection, and accident estimation. The road state is first collected, while an intelligent filter, based on SIFT extractor and a Chinese restaurant process is used to remove noise. The extended region-based convolution neural network is then applied to identify the closest vehicles to the given driver. The residual network will benefit from the vehicle detection process to make a binary classification on whether the current road state might cause an accident or not. Finally, we propose a novel optimization model for optimizing hyper-parameters in deep learning methodologies by using evolutionary computation. The proposed solution has been tested using benchmark vehicle detection and accident estimation datasets. The results are very promising and show superiority over many current state-of-the-art solutions in terms of runtime and accuracy, where the proposed solution has more than 5% of improved accident estimation rate compared to the conventional methods." @default.
- W4225917237 created "2022-05-05" @default.
- W4225917237 creator A5000640263 @default.
- W4225917237 creator A5030823020 @default.
- W4225917237 creator A5041541232 @default.
- W4225917237 creator A5057697626 @default.
- W4225917237 creator A5066157144 @default.
- W4225917237 date "2022-12-01" @default.
- W4225917237 modified "2023-09-25" @default.
- W4225917237 title "Hybrid RESNET and Regional Convolution Neural Network Framework for Accident Estimation in Smart Roads" @default.
- W4225917237 cites W1536680647 @default.
- W4225917237 cites W2000284002 @default.
- W4225917237 cites W2160882637 @default.
- W4225917237 cites W2624147939 @default.
- W4225917237 cites W2744316982 @default.
- W4225917237 cites W2963037989 @default.
- W4225917237 cites W2993040078 @default.
- W4225917237 cites W2998681640 @default.
- W4225917237 cites W3000491742 @default.
- W4225917237 cites W3001997540 @default.
- W4225917237 cites W3006492943 @default.
- W4225917237 cites W3008502799 @default.
- W4225917237 cites W3012173658 @default.
- W4225917237 cites W3020588108 @default.
- W4225917237 cites W3022557096 @default.
- W4225917237 cites W3041014620 @default.
- W4225917237 cites W3042732763 @default.
- W4225917237 cites W3044308973 @default.
- W4225917237 cites W3045117486 @default.
- W4225917237 cites W3046899825 @default.
- W4225917237 cites W3047741057 @default.
- W4225917237 cites W3082656268 @default.
- W4225917237 cites W3083017137 @default.
- W4225917237 cites W3086327128 @default.
- W4225917237 cites W3086438170 @default.
- W4225917237 cites W3089047966 @default.
- W4225917237 cites W3092339997 @default.
- W4225917237 cites W3101584909 @default.
- W4225917237 cites W3118300572 @default.
- W4225917237 cites W3118955432 @default.
- W4225917237 cites W3119026898 @default.
- W4225917237 cites W3119170582 @default.
- W4225917237 cites W3119659463 @default.
- W4225917237 cites W3134637817 @default.
- W4225917237 cites W3135227369 @default.
- W4225917237 cites W3135922489 @default.
- W4225917237 cites W3155257528 @default.
- W4225917237 cites W3176741903 @default.
- W4225917237 cites W639708223 @default.
- W4225917237 doi "https://doi.org/10.1109/tits.2022.3165156" @default.
- W4225917237 hasPublicationYear "2022" @default.
- W4225917237 type Work @default.
- W4225917237 citedByCount "2" @default.
- W4225917237 countsByYear W42259172372023 @default.
- W4225917237 crossrefType "journal-article" @default.
- W4225917237 hasAuthorship W4225917237A5000640263 @default.
- W4225917237 hasAuthorship W4225917237A5030823020 @default.
- W4225917237 hasAuthorship W4225917237A5041541232 @default.
- W4225917237 hasAuthorship W4225917237A5057697626 @default.
- W4225917237 hasAuthorship W4225917237A5066157144 @default.
- W4225917237 hasConcept C108583219 @default.
- W4225917237 hasConcept C111919701 @default.
- W4225917237 hasConcept C11413529 @default.
- W4225917237 hasConcept C119857082 @default.
- W4225917237 hasConcept C124101348 @default.
- W4225917237 hasConcept C13280743 @default.
- W4225917237 hasConcept C154945302 @default.
- W4225917237 hasConcept C155512373 @default.
- W4225917237 hasConcept C185798385 @default.
- W4225917237 hasConcept C205649164 @default.
- W4225917237 hasConcept C41008148 @default.
- W4225917237 hasConcept C45347329 @default.
- W4225917237 hasConcept C50644808 @default.
- W4225917237 hasConcept C79337645 @default.
- W4225917237 hasConcept C98045186 @default.
- W4225917237 hasConceptScore W4225917237C108583219 @default.
- W4225917237 hasConceptScore W4225917237C111919701 @default.
- W4225917237 hasConceptScore W4225917237C11413529 @default.
- W4225917237 hasConceptScore W4225917237C119857082 @default.
- W4225917237 hasConceptScore W4225917237C124101348 @default.
- W4225917237 hasConceptScore W4225917237C13280743 @default.
- W4225917237 hasConceptScore W4225917237C154945302 @default.
- W4225917237 hasConceptScore W4225917237C155512373 @default.
- W4225917237 hasConceptScore W4225917237C185798385 @default.
- W4225917237 hasConceptScore W4225917237C205649164 @default.
- W4225917237 hasConceptScore W4225917237C41008148 @default.
- W4225917237 hasConceptScore W4225917237C45347329 @default.
- W4225917237 hasConceptScore W4225917237C50644808 @default.
- W4225917237 hasConceptScore W4225917237C79337645 @default.
- W4225917237 hasConceptScore W4225917237C98045186 @default.
- W4225917237 hasIssue "12" @default.
- W4225917237 hasLocation W42259172371 @default.
- W4225917237 hasOpenAccess W4225917237 @default.
- W4225917237 hasPrimaryLocation W42259172371 @default.
- W4225917237 hasRelatedWork W2922457425 @default.
- W4225917237 hasRelatedWork W3014300295 @default.
- W4225917237 hasRelatedWork W3164822677 @default.
- W4225917237 hasRelatedWork W4223943233 @default.