Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225919793> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4225919793 abstract "Near earth sensing from unmanned aerial vehicles or UAVs has emerged as a potential approach for fine-scale environmental monitoring. These systems provide a cost-effective and repeatable means to acquire remotely sensed images in unprecedented spatial detail and high signal-to-noise ratio. It is becoming increasingly possible to obtain both physiochemical and structural insights of the environment using state-of-art light detection and ranging (LiDAR) sensors integrated onto UAVs. Monitoring of sensitive environments, such as swamp vegetation in longwall mining areas is important, yet challenging due to their inherent complexities. Current practices for monitoring these remote and difficult environments are primarily ground-based. This is partly due to an absent framework and challenges of using UAV-based sensor systems in monitoring such sensitive environments. This research addresses the related challenges in the development of a LiDAR system including a workflow for mapping and potentially monitoring highly heterogeneous and complex environments. This involves the amalgamation of several design components, which include hardware integration, calibration of sensors, mission planning, and designing of a processing chain to generate usable datasets. It also includes the creation of new methodologies and processing routines to establish a pipeline for efficient data retrieval and generation of usable products. The designed systems and methods were applied on a peat swamp environment to obtain accurate geo-spatialised LiDAR point cloud. Performance of the LiDAR data was tested against ground-based measurements on various aspects including visual assessment for generation LiDAR metrices maps, canopy height model, and fine-scale mapping." @default.
- W4225919793 created "2022-05-05" @default.
- W4225919793 creator A5064230557 @default.
- W4225919793 creator A5078542699 @default.
- W4225919793 date "2021-11-09" @default.
- W4225919793 modified "2023-10-18" @default.
- W4225919793 title "Mapping Sensitive Vegetation Communities in Mining Eco-space using UAV-LiDAR" @default.
- W4225919793 doi "https://doi.org/10.36227/techrxiv.16912138" @default.
- W4225919793 hasPublicationYear "2021" @default.
- W4225919793 type Work @default.
- W4225919793 citedByCount "0" @default.
- W4225919793 crossrefType "posted-content" @default.
- W4225919793 hasAuthorship W4225919793A5064230557 @default.
- W4225919793 hasAuthorship W4225919793A5078542699 @default.
- W4225919793 hasBestOaLocation W42259197931 @default.
- W4225919793 hasConcept C115051666 @default.
- W4225919793 hasConcept C131979681 @default.
- W4225919793 hasConcept C136764020 @default.
- W4225919793 hasConcept C142724271 @default.
- W4225919793 hasConcept C154945302 @default.
- W4225919793 hasConcept C177212765 @default.
- W4225919793 hasConcept C199360897 @default.
- W4225919793 hasConcept C205649164 @default.
- W4225919793 hasConcept C2776133958 @default.
- W4225919793 hasConcept C2778755073 @default.
- W4225919793 hasConcept C2780615836 @default.
- W4225919793 hasConcept C39432304 @default.
- W4225919793 hasConcept C41008148 @default.
- W4225919793 hasConcept C43521106 @default.
- W4225919793 hasConcept C51399673 @default.
- W4225919793 hasConcept C58640448 @default.
- W4225919793 hasConcept C62649853 @default.
- W4225919793 hasConcept C71924100 @default.
- W4225919793 hasConcept C76155785 @default.
- W4225919793 hasConcept C77088390 @default.
- W4225919793 hasConceptScore W4225919793C115051666 @default.
- W4225919793 hasConceptScore W4225919793C131979681 @default.
- W4225919793 hasConceptScore W4225919793C136764020 @default.
- W4225919793 hasConceptScore W4225919793C142724271 @default.
- W4225919793 hasConceptScore W4225919793C154945302 @default.
- W4225919793 hasConceptScore W4225919793C177212765 @default.
- W4225919793 hasConceptScore W4225919793C199360897 @default.
- W4225919793 hasConceptScore W4225919793C205649164 @default.
- W4225919793 hasConceptScore W4225919793C2776133958 @default.
- W4225919793 hasConceptScore W4225919793C2778755073 @default.
- W4225919793 hasConceptScore W4225919793C2780615836 @default.
- W4225919793 hasConceptScore W4225919793C39432304 @default.
- W4225919793 hasConceptScore W4225919793C41008148 @default.
- W4225919793 hasConceptScore W4225919793C43521106 @default.
- W4225919793 hasConceptScore W4225919793C51399673 @default.
- W4225919793 hasConceptScore W4225919793C58640448 @default.
- W4225919793 hasConceptScore W4225919793C62649853 @default.
- W4225919793 hasConceptScore W4225919793C71924100 @default.
- W4225919793 hasConceptScore W4225919793C76155785 @default.
- W4225919793 hasConceptScore W4225919793C77088390 @default.
- W4225919793 hasLocation W42259197931 @default.
- W4225919793 hasLocation W42259197932 @default.
- W4225919793 hasOpenAccess W4225919793 @default.
- W4225919793 hasPrimaryLocation W42259197931 @default.
- W4225919793 hasRelatedWork W2030080266 @default.
- W4225919793 hasRelatedWork W2272572439 @default.
- W4225919793 hasRelatedWork W2391506322 @default.
- W4225919793 hasRelatedWork W2543661874 @default.
- W4225919793 hasRelatedWork W2746940507 @default.
- W4225919793 hasRelatedWork W3004715129 @default.
- W4225919793 hasRelatedWork W3080305507 @default.
- W4225919793 hasRelatedWork W4214729122 @default.
- W4225919793 hasRelatedWork W4289435420 @default.
- W4225919793 hasRelatedWork W2189250119 @default.
- W4225919793 isParatext "false" @default.
- W4225919793 isRetracted "false" @default.
- W4225919793 workType "article" @default.