Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225980147> ?p ?o ?g. }
- W4225980147 endingPage "311" @default.
- W4225980147 startingPage "311" @default.
- W4225980147 abstract "<p style='text-indent:20px;'>Deterministic compartmental models for infectious diseases give the mean behaviour of stochastic agent-based models. These models work well for counterfactual studies in which a fully mixed large-scale population is relevant. However, with finite size populations, chance variations may lead to significant departures from the mean. In real-life applications, <i>finite size effects</i> arise from the variance of individual realizations of an epidemic course about its fluid limit. In this article, we consider the classical stochastic Susceptible-Infected-Recovered (SIR) model, and derive a martingale formulation consisting of a deterministic and a stochastic component. The deterministic part coincides with the classical deterministic SIR model and we provide an upper bound for the stochastic part. Through analysis of the stochastic component depending on varying population size, we provide a theoretical explanation of <i>finite size effects</i>. Our theory is supported by quantitative and direct numerical simulations of theoretical infinitesimal variance. Case studies of coronavirus disease 2019 (COVID-19) transmission in smaller populations illustrate that the theory provides an envelope of possible outcomes that includes the field data.</p>" @default.
- W4225980147 created "2022-05-05" @default.
- W4225980147 creator A5019560977 @default.
- W4225980147 creator A5049890851 @default.
- W4225980147 creator A5079738340 @default.
- W4225980147 creator A5090707978 @default.
- W4225980147 date "2022-01-01" @default.
- W4225980147 modified "2023-09-28" @default.
- W4225980147 title "A martingale formulation for stochastic compartmental susceptible-infected-recovered (SIR) models to analyze finite size effects in COVID-19 case studies" @default.
- W4225980147 cites W1531264907 @default.
- W4225980147 cites W1536721400 @default.
- W4225980147 cites W1537236879 @default.
- W4225980147 cites W1538558414 @default.
- W4225980147 cites W1995522593 @default.
- W4225980147 cites W2002882243 @default.
- W4225980147 cites W2036332207 @default.
- W4225980147 cites W20373697 @default.
- W4225980147 cites W2042321087 @default.
- W4225980147 cites W2065017532 @default.
- W4225980147 cites W2072895797 @default.
- W4225980147 cites W207440351 @default.
- W4225980147 cites W2088942147 @default.
- W4225980147 cites W2092076434 @default.
- W4225980147 cites W2093564649 @default.
- W4225980147 cites W2099700798 @default.
- W4225980147 cites W2116944637 @default.
- W4225980147 cites W2148301044 @default.
- W4225980147 cites W2166893822 @default.
- W4225980147 cites W2169987437 @default.
- W4225980147 cites W2198369554 @default.
- W4225980147 cites W2293609966 @default.
- W4225980147 cites W2506354201 @default.
- W4225980147 cites W2787890375 @default.
- W4225980147 cites W2790029536 @default.
- W4225980147 cites W2790110384 @default.
- W4225980147 cites W2793186588 @default.
- W4225980147 cites W2795333180 @default.
- W4225980147 cites W2795682996 @default.
- W4225980147 cites W2810761244 @default.
- W4225980147 cites W2829041456 @default.
- W4225980147 cites W2880606878 @default.
- W4225980147 cites W2884242497 @default.
- W4225980147 cites W2885182116 @default.
- W4225980147 cites W2886102496 @default.
- W4225980147 cites W2901549144 @default.
- W4225980147 cites W2954836603 @default.
- W4225980147 cites W2963530303 @default.
- W4225980147 cites W2964097150 @default.
- W4225980147 cites W2967349558 @default.
- W4225980147 cites W3008443627 @default.
- W4225980147 cites W3008842543 @default.
- W4225980147 cites W3022439851 @default.
- W4225980147 cites W3023441241 @default.
- W4225980147 cites W3040134252 @default.
- W4225980147 cites W3101614988 @default.
- W4225980147 cites W3101915710 @default.
- W4225980147 cites W3126546596 @default.
- W4225980147 cites W4213329537 @default.
- W4225980147 cites W4230843050 @default.
- W4225980147 cites W4232705268 @default.
- W4225980147 cites W4245159036 @default.
- W4225980147 cites W4254741854 @default.
- W4225980147 cites W4256711960 @default.
- W4225980147 cites W4292049208 @default.
- W4225980147 cites W4294309872 @default.
- W4225980147 cites W78182575 @default.
- W4225980147 doi "https://doi.org/10.3934/nhm.2022009" @default.
- W4225980147 hasPublicationYear "2022" @default.
- W4225980147 type Work @default.
- W4225980147 citedByCount "0" @default.
- W4225980147 crossrefType "journal-article" @default.
- W4225980147 hasAuthorship W4225980147A5019560977 @default.
- W4225980147 hasAuthorship W4225980147A5049890851 @default.
- W4225980147 hasAuthorship W4225980147A5079738340 @default.
- W4225980147 hasAuthorship W4225980147A5090707978 @default.
- W4225980147 hasBestOaLocation W42259801471 @default.
- W4225980147 hasConcept C105795698 @default.
- W4225980147 hasConcept C121332964 @default.
- W4225980147 hasConcept C121864883 @default.
- W4225980147 hasConcept C127491075 @default.
- W4225980147 hasConcept C144024400 @default.
- W4225980147 hasConcept C149923435 @default.
- W4225980147 hasConcept C28826006 @default.
- W4225980147 hasConcept C2908647359 @default.
- W4225980147 hasConcept C33923547 @default.
- W4225980147 hasConcept C48406656 @default.
- W4225980147 hasConceptScore W4225980147C105795698 @default.
- W4225980147 hasConceptScore W4225980147C121332964 @default.
- W4225980147 hasConceptScore W4225980147C121864883 @default.
- W4225980147 hasConceptScore W4225980147C127491075 @default.
- W4225980147 hasConceptScore W4225980147C144024400 @default.
- W4225980147 hasConceptScore W4225980147C149923435 @default.
- W4225980147 hasConceptScore W4225980147C28826006 @default.
- W4225980147 hasConceptScore W4225980147C2908647359 @default.
- W4225980147 hasConceptScore W4225980147C33923547 @default.
- W4225980147 hasConceptScore W4225980147C48406656 @default.
- W4225980147 hasIssue "3" @default.
- W4225980147 hasLocation W42259801471 @default.