Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225983429> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4225983429 endingPage "3635" @default.
- W4225983429 startingPage "3635" @default.
- W4225983429 abstract "A policy determines the action that an autonomous car needs to take according to its current situation. For example, the car keeps itself on track or overtakes another car, among other policies. Some autonomous cars could need more than one policy to drive appropriately. In those systems, the behavior selector subsystem selects the policy that the car needs to follow. However, in the current literature, there is not a unified way to create these policies. In most cases, the amount and definition of the policies are hand-engineering using the information taken from observations and the knowledge of the engineers. That paradigm requires a lot of human effort. Additionally, there is human subjectivity due to the hand labeling. Furthermore, the experts could not agree about the number of existing situations and the boundaries between policies (the point at which one situation turns into another). To deal with the subjectivity of setting the number and definition of policies, we propose a novel approach that uses the “divide and conquer” paradigm. This method first, sets the number of required policies by clustering previous observations into situations, and second, it configures a regression-based policy for each situation. As a result, (i) the method can detect driving situations from raw data automatically using unsupervised algorithms, helping to avoid the hand-engineering made by an expert, and (ii) the method creates relatively small and efficient policies without human intervention using behavioral cloning. To validate the method, we have collected a custom dataset in simulation and we have conducted several experiments comparing the performance of our proposal versus two state-of-the-art end-to-end methods. Our results show that our method outperforms the end-to-end approaches in terms of a bigger R square metric (0.19 over the tested methods) and a lower mean squared error (0.48 below the tested methods)." @default.
- W4225983429 created "2022-05-05" @default.
- W4225983429 creator A5038500017 @default.
- W4225983429 creator A5040962287 @default.
- W4225983429 creator A5067912821 @default.
- W4225983429 creator A5088212112 @default.
- W4225983429 date "2022-04-03" @default.
- W4225983429 modified "2023-09-27" @default.
- W4225983429 title "Unsupervised Driving Situation Detection in Latent Space for Autonomous Cars" @default.
- W4225983429 cites W1987971958 @default.
- W4225983429 cites W2045531847 @default.
- W4225983429 cites W2055404495 @default.
- W4225983429 cites W2057314159 @default.
- W4225983429 cites W2150339816 @default.
- W4225983429 cites W2321166790 @default.
- W4225983429 cites W2587460705 @default.
- W4225983429 cites W2919115771 @default.
- W4225983429 cites W3026996653 @default.
- W4225983429 cites W3034269714 @default.
- W4225983429 cites W3047375952 @default.
- W4225983429 cites W3085223684 @default.
- W4225983429 cites W3093536854 @default.
- W4225983429 cites W3175740442 @default.
- W4225983429 cites W3210535920 @default.
- W4225983429 cites W4206720985 @default.
- W4225983429 doi "https://doi.org/10.3390/app12073635" @default.
- W4225983429 hasPublicationYear "2022" @default.
- W4225983429 type Work @default.
- W4225983429 citedByCount "0" @default.
- W4225983429 crossrefType "journal-article" @default.
- W4225983429 hasAuthorship W4225983429A5038500017 @default.
- W4225983429 hasAuthorship W4225983429A5040962287 @default.
- W4225983429 hasAuthorship W4225983429A5067912821 @default.
- W4225983429 hasAuthorship W4225983429A5088212112 @default.
- W4225983429 hasBestOaLocation W42259834291 @default.
- W4225983429 hasConcept C111919701 @default.
- W4225983429 hasConcept C119857082 @default.
- W4225983429 hasConcept C121332964 @default.
- W4225983429 hasConcept C154945302 @default.
- W4225983429 hasConcept C2524010 @default.
- W4225983429 hasConcept C2778572836 @default.
- W4225983429 hasConcept C2780791683 @default.
- W4225983429 hasConcept C28719098 @default.
- W4225983429 hasConcept C33923547 @default.
- W4225983429 hasConcept C41008148 @default.
- W4225983429 hasConcept C62520636 @default.
- W4225983429 hasConcept C73555534 @default.
- W4225983429 hasConceptScore W4225983429C111919701 @default.
- W4225983429 hasConceptScore W4225983429C119857082 @default.
- W4225983429 hasConceptScore W4225983429C121332964 @default.
- W4225983429 hasConceptScore W4225983429C154945302 @default.
- W4225983429 hasConceptScore W4225983429C2524010 @default.
- W4225983429 hasConceptScore W4225983429C2778572836 @default.
- W4225983429 hasConceptScore W4225983429C2780791683 @default.
- W4225983429 hasConceptScore W4225983429C28719098 @default.
- W4225983429 hasConceptScore W4225983429C33923547 @default.
- W4225983429 hasConceptScore W4225983429C41008148 @default.
- W4225983429 hasConceptScore W4225983429C62520636 @default.
- W4225983429 hasConceptScore W4225983429C73555534 @default.
- W4225983429 hasFunder F4320321739 @default.
- W4225983429 hasIssue "7" @default.
- W4225983429 hasLocation W42259834291 @default.
- W4225983429 hasLocation W42259834292 @default.
- W4225983429 hasOpenAccess W4225983429 @default.
- W4225983429 hasPrimaryLocation W42259834291 @default.
- W4225983429 hasRelatedWork W2961085424 @default.
- W4225983429 hasRelatedWork W3046775127 @default.
- W4225983429 hasRelatedWork W3170094116 @default.
- W4225983429 hasRelatedWork W4205958290 @default.
- W4225983429 hasRelatedWork W4285260836 @default.
- W4225983429 hasRelatedWork W4286629047 @default.
- W4225983429 hasRelatedWork W4306321456 @default.
- W4225983429 hasRelatedWork W4306674287 @default.
- W4225983429 hasRelatedWork W4386462264 @default.
- W4225983429 hasRelatedWork W4224009465 @default.
- W4225983429 hasVolume "12" @default.
- W4225983429 isParatext "false" @default.
- W4225983429 isRetracted "false" @default.
- W4225983429 workType "article" @default.