Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225984736> ?p ?o ?g. }
- W4225984736 endingPage "e0266164" @default.
- W4225984736 startingPage "e0266164" @default.
- W4225984736 abstract "Entomopathogenic nematodes (EPN) of the genera Steinernema and Heterorhabditis are parasites which kill and reproduce within insects. While both have life cycles centred around their developmentally arrested, nonfeeding and stress tolerant infective juvenile (IJ) stage, they are relatively distantly related. These IJs are promising biocontrol agents, and their shelf life and stress tolerance may be enhanced by storage at low temperatures. The purpose of this study was to investigate how the proteome of the IJs of two distantly related EPN species is affected by storage at 9°C (for up to 9 weeks) and 20°C (for up to 6 weeks), using label-free quantitative proteomics. Overall, more proteins were detected in S. carpocapsae (2422) than in H. megidis (1582). The S. carpocapsae proteome was strongly affected by temperature, while the H. megidis proteome was affected by both time and temperature. The proteins which increased in abundance to the greatest extent in S. carpocapsae IJs after conditioning at 9°C were chaperone proteins, and proteins related to stress. The proteins which increased in abundance the most after storage at 20°C were proteins related to the cytoskeleton, cell signalling, proteases and their inhibitors, which may have roles in infection. The proteins which decreased in abundance to the greatest extent in S. carpocapsae after both 9°C and 20°C storage were those associated with metabolism, stress and the cytoskeleton. After storage at both temperatures, the proteins increased to the greatest extent in H. megidis IJs were those associated with the cytoskeleton, cell signalling and carbon metabolism, and the proteins decreased in abundance to the greatest extent were heat shock and ribosomal proteins, and those associated with metabolism. As the longest-lived stage of the EPN life cycle, IJs may be affected by proteostatic stress, caused by the accumulation of misfolded proteins and toxic aggregates. The substantial increase of chaperone proteins in S. carpocapsae, and to a greater extent at 9°C, and the general decrease in ribosomal and chaperone proteins in H. megidis may represent species-specific proteostasis mechanisms. Similarly, organisms accumulate reactive oxygen species (ROS) over time and both species exhibited a gradual increase in proteins which enhance ROS tolerance, such as catalase. The species-specific responses of the proteome in response to storage temperature, and over time, may reflect the phylogenetic distance and/or different ecological strategies." @default.
- W4225984736 created "2022-05-05" @default.
- W4225984736 creator A5000586705 @default.
- W4225984736 creator A5009477175 @default.
- W4225984736 creator A5068212578 @default.
- W4225984736 date "2022-04-07" @default.
- W4225984736 modified "2023-10-18" @default.
- W4225984736 title "The effect of temperature conditioning (9°C and 20°C) on the proteome of entomopathogenic nematode infective juveniles" @default.
- W4225984736 cites W1445635433 @default.
- W4225984736 cites W1504941317 @default.
- W4225984736 cites W1511706710 @default.
- W4225984736 cites W1512809279 @default.
- W4225984736 cites W1568373669 @default.
- W4225984736 cites W1580655169 @default.
- W4225984736 cites W1670357575 @default.
- W4225984736 cites W1963689387 @default.
- W4225984736 cites W1967390196 @default.
- W4225984736 cites W1980110656 @default.
- W4225984736 cites W1989167877 @default.
- W4225984736 cites W1991320020 @default.
- W4225984736 cites W1996673371 @default.
- W4225984736 cites W1998926954 @default.
- W4225984736 cites W2002741326 @default.
- W4225984736 cites W2013747035 @default.
- W4225984736 cites W2014823811 @default.
- W4225984736 cites W2015040639 @default.
- W4225984736 cites W2017147655 @default.
- W4225984736 cites W2017399352 @default.
- W4225984736 cites W2028369611 @default.
- W4225984736 cites W2029481826 @default.
- W4225984736 cites W2034016585 @default.
- W4225984736 cites W2036321220 @default.
- W4225984736 cites W2037753138 @default.
- W4225984736 cites W2048196182 @default.
- W4225984736 cites W2048407401 @default.
- W4225984736 cites W2052173805 @default.
- W4225984736 cites W2058484936 @default.
- W4225984736 cites W2059041864 @default.
- W4225984736 cites W2061290876 @default.
- W4225984736 cites W2062669903 @default.
- W4225984736 cites W2070174080 @default.
- W4225984736 cites W2079620518 @default.
- W4225984736 cites W2086691574 @default.
- W4225984736 cites W2087863582 @default.
- W4225984736 cites W2088377169 @default.
- W4225984736 cites W2089145020 @default.
- W4225984736 cites W2091474319 @default.
- W4225984736 cites W2091735226 @default.
- W4225984736 cites W2097966092 @default.
- W4225984736 cites W2098630122 @default.
- W4225984736 cites W2101014533 @default.
- W4225984736 cites W2106909490 @default.
- W4225984736 cites W2123768917 @default.
- W4225984736 cites W2130725927 @default.
- W4225984736 cites W2136396433 @default.
- W4225984736 cites W2144427831 @default.
- W4225984736 cites W2144875446 @default.
- W4225984736 cites W2151893314 @default.
- W4225984736 cites W2153112470 @default.
- W4225984736 cites W2156135746 @default.
- W4225984736 cites W2156640353 @default.
- W4225984736 cites W2160721112 @default.
- W4225984736 cites W2170946319 @default.
- W4225984736 cites W2171814265 @default.
- W4225984736 cites W2345608611 @default.
- W4225984736 cites W2557132919 @default.
- W4225984736 cites W2605417677 @default.
- W4225984736 cites W2911882278 @default.
- W4225984736 cites W2948257289 @default.
- W4225984736 cites W2950794260 @default.
- W4225984736 cites W2952819211 @default.
- W4225984736 cites W2981013456 @default.
- W4225984736 cites W2981049660 @default.
- W4225984736 cites W4236655613 @default.
- W4225984736 doi "https://doi.org/10.1371/journal.pone.0266164" @default.
- W4225984736 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35390034" @default.
- W4225984736 hasPublicationYear "2022" @default.
- W4225984736 type Work @default.
- W4225984736 citedByCount "2" @default.
- W4225984736 countsByYear W42259847362022 @default.
- W4225984736 countsByYear W42259847362023 @default.
- W4225984736 crossrefType "journal-article" @default.
- W4225984736 hasAuthorship W4225984736A5000586705 @default.
- W4225984736 hasAuthorship W4225984736A5009477175 @default.
- W4225984736 hasAuthorship W4225984736A5068212578 @default.
- W4225984736 hasBestOaLocation W42259847361 @default.
- W4225984736 hasConcept C104317684 @default.
- W4225984736 hasConcept C104397665 @default.
- W4225984736 hasConcept C142669718 @default.
- W4225984736 hasConcept C1491633281 @default.
- W4225984736 hasConcept C181199279 @default.
- W4225984736 hasConcept C182220744 @default.
- W4225984736 hasConcept C18903297 @default.
- W4225984736 hasConcept C190283241 @default.
- W4225984736 hasConcept C2778830712 @default.
- W4225984736 hasConcept C2780473643 @default.
- W4225984736 hasConcept C3019137385 @default.
- W4225984736 hasConcept C46111723 @default.