Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225988082> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4225988082 abstract "Abstract Every year the government and people suffer from the cost of damages caused by natural disasters such as hurricanes and floods. Thanks to Global Positioning System (GPS) permanent station data, today it is possible to determine the amount of Water Vapor (WV) very accurately and reliably. GPS signals pass through different layers of the atmosphere, such as the ionosphere and troposphere, and therefore they are delayed. A significant part of the delay is due to the troposphere, which is one of the serious sources of error in GPS. In this research, by using 5 GPS permanent stations located in the Arasbaran region, in northwest of Iran, the Precipitable Water Vapor (PWV) is evaluated in order to show the capacity of this method in forecasting the October 2012 flood over the region. The results showed that the amount of PWV in the atmosphere had increased by 2 mm a few hours before the flood, which could be used as a forecast indicator. The Tikhonov regularization for tropospheric tomography covering the GPS stations region was also performed for latitude and altitude components for 3 consecutive days: the day before the flood, the flood day, and the day after the flood. A high amount of PWV was observed in the troposphere on the day before the flood, and especially on the flood day. During the study period, the results from tomography and the radiosonde were in good agreement, with a significance correlation of around 0.95. Also, the values of PWV obtained from GPS and MODIS-NIR do not have an absolute error more than 4.4 mm over the 8 days from 8 October 2012 to 15 October 2012." @default.
- W4225988082 created "2022-05-05" @default.
- W4225988082 creator A5068425861 @default.
- W4225988082 creator A5062750601 @default.
- W4225988082 date "2022-04-05" @default.
- W4225988082 modified "2023-10-18" @default.
- W4225988082 title "4D Modeling of Precipitable Water Vapor to Assess Flood Forecasting by Using GPS Signals" @default.
- W4225988082 doi "https://doi.org/10.21203/rs.3.rs-1502945/v1" @default.
- W4225988082 hasPublicationYear "2022" @default.
- W4225988082 type Work @default.
- W4225988082 citedByCount "0" @default.
- W4225988082 crossrefType "posted-content" @default.
- W4225988082 hasAuthorship W4225988082A5062750601 @default.
- W4225988082 hasAuthorship W4225988082A5068425861 @default.
- W4225988082 hasBestOaLocation W42259880821 @default.
- W4225988082 hasConcept C11999413 @default.
- W4225988082 hasConcept C122523270 @default.
- W4225988082 hasConcept C127313418 @default.
- W4225988082 hasConcept C13280743 @default.
- W4225988082 hasConcept C134306372 @default.
- W4225988082 hasConcept C135252773 @default.
- W4225988082 hasConcept C147534773 @default.
- W4225988082 hasConcept C152442038 @default.
- W4225988082 hasConcept C153294291 @default.
- W4225988082 hasConcept C156008332 @default.
- W4225988082 hasConcept C166957645 @default.
- W4225988082 hasConcept C205649164 @default.
- W4225988082 hasConcept C2524010 @default.
- W4225988082 hasConcept C33923547 @default.
- W4225988082 hasConcept C39432304 @default.
- W4225988082 hasConcept C41008148 @default.
- W4225988082 hasConcept C49204034 @default.
- W4225988082 hasConcept C60229501 @default.
- W4225988082 hasConcept C6350597 @default.
- W4225988082 hasConcept C65440619 @default.
- W4225988082 hasConcept C74256435 @default.
- W4225988082 hasConcept C76155785 @default.
- W4225988082 hasConcept C9075549 @default.
- W4225988082 hasConcept C91586092 @default.
- W4225988082 hasConceptScore W4225988082C11999413 @default.
- W4225988082 hasConceptScore W4225988082C122523270 @default.
- W4225988082 hasConceptScore W4225988082C127313418 @default.
- W4225988082 hasConceptScore W4225988082C13280743 @default.
- W4225988082 hasConceptScore W4225988082C134306372 @default.
- W4225988082 hasConceptScore W4225988082C135252773 @default.
- W4225988082 hasConceptScore W4225988082C147534773 @default.
- W4225988082 hasConceptScore W4225988082C152442038 @default.
- W4225988082 hasConceptScore W4225988082C153294291 @default.
- W4225988082 hasConceptScore W4225988082C156008332 @default.
- W4225988082 hasConceptScore W4225988082C166957645 @default.
- W4225988082 hasConceptScore W4225988082C205649164 @default.
- W4225988082 hasConceptScore W4225988082C2524010 @default.
- W4225988082 hasConceptScore W4225988082C33923547 @default.
- W4225988082 hasConceptScore W4225988082C39432304 @default.
- W4225988082 hasConceptScore W4225988082C41008148 @default.
- W4225988082 hasConceptScore W4225988082C49204034 @default.
- W4225988082 hasConceptScore W4225988082C60229501 @default.
- W4225988082 hasConceptScore W4225988082C6350597 @default.
- W4225988082 hasConceptScore W4225988082C65440619 @default.
- W4225988082 hasConceptScore W4225988082C74256435 @default.
- W4225988082 hasConceptScore W4225988082C76155785 @default.
- W4225988082 hasConceptScore W4225988082C9075549 @default.
- W4225988082 hasConceptScore W4225988082C91586092 @default.
- W4225988082 hasLocation W42259880821 @default.
- W4225988082 hasOpenAccess W4225988082 @default.
- W4225988082 hasPrimaryLocation W42259880821 @default.
- W4225988082 hasRelatedWork W1973408306 @default.
- W4225988082 hasRelatedWork W2028727382 @default.
- W4225988082 hasRelatedWork W2055890126 @default.
- W4225988082 hasRelatedWork W2318856281 @default.
- W4225988082 hasRelatedWork W2383461352 @default.
- W4225988082 hasRelatedWork W2383463955 @default.
- W4225988082 hasRelatedWork W2384996032 @default.
- W4225988082 hasRelatedWork W2799320788 @default.
- W4225988082 hasRelatedWork W4225988082 @default.
- W4225988082 hasRelatedWork W4383907499 @default.
- W4225988082 isParatext "false" @default.
- W4225988082 isRetracted "false" @default.
- W4225988082 workType "article" @default.