Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225995462> ?p ?o ?g. }
- W4225995462 endingPage "111260" @default.
- W4225995462 startingPage "111260" @default.
- W4225995462 abstract "Physics informed neural networks (PINNs) are a novel deep learning paradigm primed for solving forward and inverse problems of nonlinear partial differential equations (PDEs). By embedding physical information delineated by PDEs in feedforward neural networks, PINNs are trained as surrogate models for approximate solution to the PDEs without need of label data. Due to the excellent capability of neural networks in describing complex relationships, a variety of PINN-based methods have been developed to solve different kinds of problems such as integer-order PDEs, fractional PDEs, stochastic PDEs and integro-differential equations (IDEs). However, for the state-of-the-art PINN methods in application to IDEs, integral discretization is a key prerequisite in order that IDEs can be transformed into ordinary differential equations (ODEs). However, integral discretization inevitably introduces discretization error and truncation error to the solution. In this study, we propose an auxiliary physics informed neural network (A-PINN) framework for solving forward and inverse problems of nonlinear IDEs. By defining auxiliary output variable(s) to represent the integral(s) in the governing equation and employing automatic differentiation of the auxiliary output to replace integral operator, the proposed A-PINN bypasses the limitation of integral discretization. Distinct from the neural network in the original PINN which only approximates the variables in the governing equation, in the proposed A-PINN framework, a multi-output neural network is constructed to simultaneously calculate the primary outputs and auxiliary outputs which respectively approximate the variables and integrals in the governing equation. Subsequently, the relationship between the primary outputs and auxiliary outputs is constrained by new output conditions in compliance with physical laws. By pursuing the first-order nonlinear Volterra IDE benchmark problem, we validate that the proposed A-PINN can obtain more accurate solution than the conventional PINN. We further demonstrate the good performance of A-PINN in solving the forward problems involving nonlinear Volterra IDEs system, nonlinear 2-dimensional Volterra IDE, nonlinear 10-dimensional Volterra IDE, and nonlinear Fredholm IDE. Finally, the A-PINN framework is implemented to solve the inverse problem of nonlinear IDEs and the results show that the unknown parameters can be satisfactorily discovered even with heavily noisy data." @default.
- W4225995462 created "2022-05-05" @default.
- W4225995462 creator A5012038173 @default.
- W4225995462 creator A5012316338 @default.
- W4225995462 creator A5052802818 @default.
- W4225995462 creator A5079206848 @default.
- W4225995462 date "2022-08-01" @default.
- W4225995462 modified "2023-10-13" @default.
- W4225995462 title "A-PINN: Auxiliary physics informed neural networks for forward and inverse problems of nonlinear integro-differential equations" @default.
- W4225995462 cites W2068761599 @default.
- W4225995462 cites W2082820837 @default.
- W4225995462 cites W2890968382 @default.
- W4225995462 cites W2899283552 @default.
- W4225995462 cites W2900369848 @default.
- W4225995462 cites W2948551291 @default.
- W4225995462 cites W2955944315 @default.
- W4225995462 cites W2965419988 @default.
- W4225995462 cites W2969381807 @default.
- W4225995462 cites W2993505246 @default.
- W4225995462 cites W2997814214 @default.
- W4225995462 cites W2998366519 @default.
- W4225995462 cites W3004450693 @default.
- W4225995462 cites W3008118574 @default.
- W4225995462 cites W3010849941 @default.
- W4225995462 cites W3011147100 @default.
- W4225995462 cites W3011806874 @default.
- W4225995462 cites W3014009018 @default.
- W4225995462 cites W3015865829 @default.
- W4225995462 cites W3021668893 @default.
- W4225995462 cites W3028009715 @default.
- W4225995462 cites W3037134996 @default.
- W4225995462 cites W3041682155 @default.
- W4225995462 cites W3098546160 @default.
- W4225995462 cites W3099057226 @default.
- W4225995462 cites W3111914315 @default.
- W4225995462 cites W3115207133 @default.
- W4225995462 cites W3118861991 @default.
- W4225995462 cites W3119602513 @default.
- W4225995462 cites W3128415258 @default.
- W4225995462 cites W3137392741 @default.
- W4225995462 cites W3153200540 @default.
- W4225995462 cites W3154575637 @default.
- W4225995462 cites W3167256391 @default.
- W4225995462 cites W3174598394 @default.
- W4225995462 cites W3179444763 @default.
- W4225995462 cites W3181235980 @default.
- W4225995462 cites W3193222792 @default.
- W4225995462 cites W3200673624 @default.
- W4225995462 cites W3205073660 @default.
- W4225995462 doi "https://doi.org/10.1016/j.jcp.2022.111260" @default.
- W4225995462 hasPublicationYear "2022" @default.
- W4225995462 type Work @default.
- W4225995462 citedByCount "38" @default.
- W4225995462 countsByYear W42259954622022 @default.
- W4225995462 countsByYear W42259954622023 @default.
- W4225995462 crossrefType "journal-article" @default.
- W4225995462 hasAuthorship W4225995462A5012038173 @default.
- W4225995462 hasAuthorship W4225995462A5012316338 @default.
- W4225995462 hasAuthorship W4225995462A5052802818 @default.
- W4225995462 hasAuthorship W4225995462A5079206848 @default.
- W4225995462 hasBestOaLocation W42259954621 @default.
- W4225995462 hasConcept C121332964 @default.
- W4225995462 hasConcept C126255220 @default.
- W4225995462 hasConcept C134306372 @default.
- W4225995462 hasConcept C135252773 @default.
- W4225995462 hasConcept C154945302 @default.
- W4225995462 hasConcept C158622935 @default.
- W4225995462 hasConcept C27016315 @default.
- W4225995462 hasConcept C28826006 @default.
- W4225995462 hasConcept C33923547 @default.
- W4225995462 hasConcept C41008148 @default.
- W4225995462 hasConcept C47702885 @default.
- W4225995462 hasConcept C50644808 @default.
- W4225995462 hasConcept C62520636 @default.
- W4225995462 hasConcept C73000952 @default.
- W4225995462 hasConcept C93779851 @default.
- W4225995462 hasConceptScore W4225995462C121332964 @default.
- W4225995462 hasConceptScore W4225995462C126255220 @default.
- W4225995462 hasConceptScore W4225995462C134306372 @default.
- W4225995462 hasConceptScore W4225995462C135252773 @default.
- W4225995462 hasConceptScore W4225995462C154945302 @default.
- W4225995462 hasConceptScore W4225995462C158622935 @default.
- W4225995462 hasConceptScore W4225995462C27016315 @default.
- W4225995462 hasConceptScore W4225995462C28826006 @default.
- W4225995462 hasConceptScore W4225995462C33923547 @default.
- W4225995462 hasConceptScore W4225995462C41008148 @default.
- W4225995462 hasConceptScore W4225995462C47702885 @default.
- W4225995462 hasConceptScore W4225995462C50644808 @default.
- W4225995462 hasConceptScore W4225995462C62520636 @default.
- W4225995462 hasConceptScore W4225995462C73000952 @default.
- W4225995462 hasConceptScore W4225995462C93779851 @default.
- W4225995462 hasLocation W42259954621 @default.
- W4225995462 hasOpenAccess W4225995462 @default.
- W4225995462 hasPrimaryLocation W42259954621 @default.
- W4225995462 hasRelatedWork W1492103595 @default.
- W4225995462 hasRelatedWork W1971388572 @default.
- W4225995462 hasRelatedWork W2334479858 @default.
- W4225995462 hasRelatedWork W2364741597 @default.