Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226013668> ?p ?o ?g. }
- W4226013668 abstract "Plant diseases are the major cause of agricultural production losses. Visual leaf assessment based on human capability is the traditional diagnostic approach but leads to errors that contribute to losses. As a response, the analysis of rice (Oryza sativa) leaf quality through the development of a diagnostic method based on computational imaging was explored in this study. Feature-based machine learning (ML) algorithms including k-nearest neighbors (KNN), linear discrimination analysis (LDA), Naïve Bayes (NB), decision tree for classification (CT), and support vector machine (SVM) were configured for the classification of the health status of rice leaves according to the spectro-textural characteristics of image samples. A total of 17 features were extracted through the HSV color space thresholding technique which was further simplified through neighborhood-principal component analysis (NCA-PCA) selection that resulted in a four-feature vector (a*, Cr, contrast, homogeneity). Further, Deep neural networks (DNN) comprising ResNet-50, ResNet-101, GoogLeNet, MobileNetv2, and Inceptionv3 networks were used to categorize the disease variants. As a result, all ML models exhibited excellent classification performance. Additionally, the KNN model delivered an accuracy rating of 97.92% for health condition classification. Also, among the created DNN models, DNN <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>RN50</inf> produced a disease identification accuracy of 95.83%. With that, a vision-based diagnostic tool, OryzaNet, was established. This technique is a non-intrusive and novel approach to phenotyping and assessing the quality of rice leaves." @default.
- W4226013668 created "2022-05-05" @default.
- W4226013668 creator A5014017066 @default.
- W4226013668 creator A5027440897 @default.
- W4226013668 creator A5037358550 @default.
- W4226013668 creator A5052334169 @default.
- W4226013668 creator A5084335648 @default.
- W4226013668 creator A5084809753 @default.
- W4226013668 date "2021-11-28" @default.
- W4226013668 modified "2023-10-18" @default.
- W4226013668 title "OryzaNet: Leaf Quality Assessment of Oryza sativa Using Hybrid Machine Learning and Deep Neural Network" @default.
- W4226013668 cites W1597793043 @default.
- W4226013668 cites W1980474730 @default.
- W4226013668 cites W2018104417 @default.
- W4226013668 cites W2027658456 @default.
- W4226013668 cites W2098567697 @default.
- W4226013668 cites W2169768163 @default.
- W4226013668 cites W2714342494 @default.
- W4226013668 cites W2779234129 @default.
- W4226013668 cites W2913500366 @default.
- W4226013668 cites W3017125705 @default.
- W4226013668 cites W3019446723 @default.
- W4226013668 cites W3027277555 @default.
- W4226013668 cites W3033196717 @default.
- W4226013668 cites W3046748795 @default.
- W4226013668 cites W3096731251 @default.
- W4226013668 cites W3114027690 @default.
- W4226013668 cites W3114564184 @default.
- W4226013668 cites W3114681304 @default.
- W4226013668 cites W3115216236 @default.
- W4226013668 cites W3152771849 @default.
- W4226013668 cites W3157936154 @default.
- W4226013668 cites W3158348134 @default.
- W4226013668 cites W3158760582 @default.
- W4226013668 cites W3160185242 @default.
- W4226013668 cites W3162893763 @default.
- W4226013668 cites W3192954355 @default.
- W4226013668 cites W3195122330 @default.
- W4226013668 cites W3200345121 @default.
- W4226013668 cites W4200232925 @default.
- W4226013668 cites W4200584006 @default.
- W4226013668 doi "https://doi.org/10.1109/hnicem54116.2021.9731957" @default.
- W4226013668 hasPublicationYear "2021" @default.
- W4226013668 type Work @default.
- W4226013668 citedByCount "7" @default.
- W4226013668 countsByYear W42260136682022 @default.
- W4226013668 countsByYear W42260136682023 @default.
- W4226013668 crossrefType "proceedings-article" @default.
- W4226013668 hasAuthorship W4226013668A5014017066 @default.
- W4226013668 hasAuthorship W4226013668A5027440897 @default.
- W4226013668 hasAuthorship W4226013668A5037358550 @default.
- W4226013668 hasAuthorship W4226013668A5052334169 @default.
- W4226013668 hasAuthorship W4226013668A5084335648 @default.
- W4226013668 hasAuthorship W4226013668A5084809753 @default.
- W4226013668 hasConcept C104317684 @default.
- W4226013668 hasConcept C115961682 @default.
- W4226013668 hasConcept C119857082 @default.
- W4226013668 hasConcept C12267149 @default.
- W4226013668 hasConcept C148483581 @default.
- W4226013668 hasConcept C153180895 @default.
- W4226013668 hasConcept C154945302 @default.
- W4226013668 hasConcept C169258074 @default.
- W4226013668 hasConcept C191178318 @default.
- W4226013668 hasConcept C27438332 @default.
- W4226013668 hasConcept C2778543611 @default.
- W4226013668 hasConcept C41008148 @default.
- W4226013668 hasConcept C50644808 @default.
- W4226013668 hasConcept C52001869 @default.
- W4226013668 hasConcept C55493867 @default.
- W4226013668 hasConcept C84525736 @default.
- W4226013668 hasConcept C86803240 @default.
- W4226013668 hasConceptScore W4226013668C104317684 @default.
- W4226013668 hasConceptScore W4226013668C115961682 @default.
- W4226013668 hasConceptScore W4226013668C119857082 @default.
- W4226013668 hasConceptScore W4226013668C12267149 @default.
- W4226013668 hasConceptScore W4226013668C148483581 @default.
- W4226013668 hasConceptScore W4226013668C153180895 @default.
- W4226013668 hasConceptScore W4226013668C154945302 @default.
- W4226013668 hasConceptScore W4226013668C169258074 @default.
- W4226013668 hasConceptScore W4226013668C191178318 @default.
- W4226013668 hasConceptScore W4226013668C27438332 @default.
- W4226013668 hasConceptScore W4226013668C2778543611 @default.
- W4226013668 hasConceptScore W4226013668C41008148 @default.
- W4226013668 hasConceptScore W4226013668C50644808 @default.
- W4226013668 hasConceptScore W4226013668C52001869 @default.
- W4226013668 hasConceptScore W4226013668C55493867 @default.
- W4226013668 hasConceptScore W4226013668C84525736 @default.
- W4226013668 hasConceptScore W4226013668C86803240 @default.
- W4226013668 hasFunder F4320313925 @default.
- W4226013668 hasLocation W42260136681 @default.
- W4226013668 hasOpenAccess W4226013668 @default.
- W4226013668 hasPrimaryLocation W42260136681 @default.
- W4226013668 hasRelatedWork W2985924212 @default.
- W4226013668 hasRelatedWork W3127425528 @default.
- W4226013668 hasRelatedWork W3143658565 @default.
- W4226013668 hasRelatedWork W3210877509 @default.
- W4226013668 hasRelatedWork W4205958290 @default.
- W4226013668 hasRelatedWork W4213444042 @default.
- W4226013668 hasRelatedWork W4281846282 @default.
- W4226013668 hasRelatedWork W4283016678 @default.