Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226016872> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4226016872 endingPage "3090" @default.
- W4226016872 startingPage "3073" @default.
- W4226016872 abstract "In order to address the problems of Coyote Optimization Algorithm in image thresholding, such as easily falling into local optimum, and slow convergence speed, a Fuzzy Hybrid Coyote Optimization Algorithm (hereinafter referred to as FHCOA) based on chaotic initialization and reverse learning strategy is proposed, and its effect on image thresholding is verified. Through chaotic initialization, the random number initialization mode in the standard coyote optimization algorithm (COA) is replaced by chaotic sequence. Such sequence is nonlinear and long-term unpredictable, these characteristics can effectively improve the diversity of the population in the optimization algorithm. Therefore, in this paper we first perform chaotic initialization, using chaotic sequence to replace random number initialization in standard COA. By combining the lens imaging reverse learning strategy and the optimal worst reverse learning strategy, a hybrid reverse learning strategy is then formed. In the process of algorithm traversal, the best coyote and the worst coyote in the pack are selected for reverse learning operation respectively, which prevents the algorithm falling into local optimum to a certain extent and also solves the problem of premature convergence. Based on the above improvements, the coyote optimization algorithm has better global convergence and computational robustness. The simulation results show that the algorithm has better thresholding effect than the five commonly used optimization algorithms in image thresholding when multiple images are selected and different threshold numbers are set." @default.
- W4226016872 created "2022-05-05" @default.
- W4226016872 creator A5008950875 @default.
- W4226016872 creator A5016360933 @default.
- W4226016872 creator A5050574184 @default.
- W4226016872 creator A5062584153 @default.
- W4226016872 creator A5070050092 @default.
- W4226016872 creator A5073758616 @default.
- W4226016872 date "2022-01-01" @default.
- W4226016872 modified "2023-10-14" @default.
- W4226016872 title "Fuzzy Hybrid Coyote Optimization Algorithm for Image Thresholding" @default.
- W4226016872 cites W2525420961 @default.
- W4226016872 cites W2606234828 @default.
- W4226016872 cites W2802655778 @default.
- W4226016872 cites W2938033784 @default.
- W4226016872 cites W2960034536 @default.
- W4226016872 cites W2968480306 @default.
- W4226016872 cites W2970628322 @default.
- W4226016872 cites W2977668282 @default.
- W4226016872 cites W3011837119 @default.
- W4226016872 cites W3093779980 @default.
- W4226016872 cites W3133158957 @default.
- W4226016872 cites W3161503937 @default.
- W4226016872 cites W3168523760 @default.
- W4226016872 cites W3169921076 @default.
- W4226016872 cites W3183199155 @default.
- W4226016872 cites W3185949252 @default.
- W4226016872 cites W3193238958 @default.
- W4226016872 cites W3196875632 @default.
- W4226016872 cites W3208519757 @default.
- W4226016872 doi "https://doi.org/10.32604/cmc.2022.026625" @default.
- W4226016872 hasPublicationYear "2022" @default.
- W4226016872 type Work @default.
- W4226016872 citedByCount "1" @default.
- W4226016872 countsByYear W42260168722023 @default.
- W4226016872 crossrefType "journal-article" @default.
- W4226016872 hasAuthorship W4226016872A5008950875 @default.
- W4226016872 hasAuthorship W4226016872A5016360933 @default.
- W4226016872 hasAuthorship W4226016872A5050574184 @default.
- W4226016872 hasAuthorship W4226016872A5062584153 @default.
- W4226016872 hasAuthorship W4226016872A5070050092 @default.
- W4226016872 hasAuthorship W4226016872A5073758616 @default.
- W4226016872 hasBestOaLocation W42260168721 @default.
- W4226016872 hasConcept C11413529 @default.
- W4226016872 hasConcept C114466953 @default.
- W4226016872 hasConcept C115961682 @default.
- W4226016872 hasConcept C126255220 @default.
- W4226016872 hasConcept C154945302 @default.
- W4226016872 hasConcept C191178318 @default.
- W4226016872 hasConcept C199360897 @default.
- W4226016872 hasConcept C2777052490 @default.
- W4226016872 hasConcept C33923547 @default.
- W4226016872 hasConcept C41008148 @default.
- W4226016872 hasConcept C58758708 @default.
- W4226016872 hasConcept C85617194 @default.
- W4226016872 hasConceptScore W4226016872C11413529 @default.
- W4226016872 hasConceptScore W4226016872C114466953 @default.
- W4226016872 hasConceptScore W4226016872C115961682 @default.
- W4226016872 hasConceptScore W4226016872C126255220 @default.
- W4226016872 hasConceptScore W4226016872C154945302 @default.
- W4226016872 hasConceptScore W4226016872C191178318 @default.
- W4226016872 hasConceptScore W4226016872C199360897 @default.
- W4226016872 hasConceptScore W4226016872C2777052490 @default.
- W4226016872 hasConceptScore W4226016872C33923547 @default.
- W4226016872 hasConceptScore W4226016872C41008148 @default.
- W4226016872 hasConceptScore W4226016872C58758708 @default.
- W4226016872 hasConceptScore W4226016872C85617194 @default.
- W4226016872 hasIssue "2" @default.
- W4226016872 hasLocation W42260168721 @default.
- W4226016872 hasOpenAccess W4226016872 @default.
- W4226016872 hasPrimaryLocation W42260168721 @default.
- W4226016872 hasRelatedWork W1991387858 @default.
- W4226016872 hasRelatedWork W1991469810 @default.
- W4226016872 hasRelatedWork W2036426366 @default.
- W4226016872 hasRelatedWork W2081140290 @default.
- W4226016872 hasRelatedWork W2259436614 @default.
- W4226016872 hasRelatedWork W2260807095 @default.
- W4226016872 hasRelatedWork W2341132039 @default.
- W4226016872 hasRelatedWork W2342678539 @default.
- W4226016872 hasRelatedWork W3003416886 @default.
- W4226016872 hasRelatedWork W3007558735 @default.
- W4226016872 hasVolume "72" @default.
- W4226016872 isParatext "false" @default.
- W4226016872 isRetracted "false" @default.
- W4226016872 workType "article" @default.