Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226016918> ?p ?o ?g. }
- W4226016918 endingPage "569" @default.
- W4226016918 startingPage "560" @default.
- W4226016918 abstract "An accurate estimation of glomerular filtration rate (GFR) is clinically crucial for kidney disease diagnosis and predicting the prognosis of chronic kidney disease (CKD). Machine learning methodologies such as deep neural networks provide a potential avenue for increasing accuracy in GFR estimation. We developed a novel deep learning architecture, a deep and shallow neural network, to estimate GFR (dlGFR for short) and examined its comparative performance with estimated GFR from Modification of Diet in Renal Disease (MDRD) and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations. The dlGFR model jointly trains a shallow learning model and a deep neural network to enable both linear transformation from input features to a log GFR target, and non-linear feature embedding for stage of kidney function classification. We validate the proposed methods on the data from multiple studies obtained from the NIDDK Central Database Repository. The deep learning model predicted values of GFR within 30% of measured GFR with 88.3% accuracy, compared to the 87.1% and 84.7% of the accuracy achieved by CKD-EPI and MDRD equations (p = 0.051 and p < 0.001, respectively). Our results suggest that deep learning methods are superior to equations resulting from traditional statistical methods in estimating glomerular filtration rate. Based on these results, an end-to-end predication system has been deployed to facilitate use of the proposed dlGFR algorithm." @default.
- W4226016918 created "2022-05-05" @default.
- W4226016918 creator A5005399110 @default.
- W4226016918 creator A5029777766 @default.
- W4226016918 creator A5047118636 @default.
- W4226016918 creator A5047490642 @default.
- W4226016918 creator A5059755277 @default.
- W4226016918 creator A5085651160 @default.
- W4226016918 creator A5088449459 @default.
- W4226016918 date "2022-10-01" @default.
- W4226016918 modified "2023-09-27" @default.
- W4226016918 title "A Deep Learning Approach for the Estimation of Glomerular Filtration Rate" @default.
- W4226016918 cites W1569664259 @default.
- W4226016918 cites W1752045965 @default.
- W4226016918 cites W1895721478 @default.
- W4226016918 cites W1966337012 @default.
- W4226016918 cites W2003056396 @default.
- W4226016918 cites W2005064880 @default.
- W4226016918 cites W2011503796 @default.
- W4226016918 cites W2015754438 @default.
- W4226016918 cites W2028464499 @default.
- W4226016918 cites W2031017520 @default.
- W4226016918 cites W2033723052 @default.
- W4226016918 cites W2043575472 @default.
- W4226016918 cites W2053091007 @default.
- W4226016918 cites W2053835016 @default.
- W4226016918 cites W2055864845 @default.
- W4226016918 cites W2056503496 @default.
- W4226016918 cites W2066107986 @default.
- W4226016918 cites W2073068607 @default.
- W4226016918 cites W2075205049 @default.
- W4226016918 cites W2090860909 @default.
- W4226016918 cites W2098204192 @default.
- W4226016918 cites W2099923962 @default.
- W4226016918 cites W2100164846 @default.
- W4226016918 cites W2104620275 @default.
- W4226016918 cites W2107195787 @default.
- W4226016918 cites W2112316706 @default.
- W4226016918 cites W2117573216 @default.
- W4226016918 cites W2118625269 @default.
- W4226016918 cites W2119284279 @default.
- W4226016918 cites W2124543160 @default.
- W4226016918 cites W2131779076 @default.
- W4226016918 cites W2133275623 @default.
- W4226016918 cites W2142679015 @default.
- W4226016918 cites W2145632027 @default.
- W4226016918 cites W2148983669 @default.
- W4226016918 cites W2155965977 @default.
- W4226016918 cites W2156486561 @default.
- W4226016918 cites W2165817472 @default.
- W4226016918 cites W2234357320 @default.
- W4226016918 cites W2470481127 @default.
- W4226016918 cites W2581082771 @default.
- W4226016918 cites W2613546476 @default.
- W4226016918 cites W2763359546 @default.
- W4226016918 cites W2768029705 @default.
- W4226016918 cites W2769264260 @default.
- W4226016918 cites W2772368907 @default.
- W4226016918 cites W2777287263 @default.
- W4226016918 cites W2792919287 @default.
- W4226016918 cites W2794882499 @default.
- W4226016918 cites W2800167607 @default.
- W4226016918 cites W2895068379 @default.
- W4226016918 cites W2933013505 @default.
- W4226016918 cites W2945048168 @default.
- W4226016918 cites W2946555518 @default.
- W4226016918 cites W2952456842 @default.
- W4226016918 cites W3137972473 @default.
- W4226016918 doi "https://doi.org/10.1109/tnb.2022.3147957" @default.
- W4226016918 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35100119" @default.
- W4226016918 hasPublicationYear "2022" @default.
- W4226016918 type Work @default.
- W4226016918 citedByCount "4" @default.
- W4226016918 countsByYear W42260169182022 @default.
- W4226016918 countsByYear W42260169182023 @default.
- W4226016918 crossrefType "journal-article" @default.
- W4226016918 hasAuthorship W4226016918A5005399110 @default.
- W4226016918 hasAuthorship W4226016918A5029777766 @default.
- W4226016918 hasAuthorship W4226016918A5047118636 @default.
- W4226016918 hasAuthorship W4226016918A5047490642 @default.
- W4226016918 hasAuthorship W4226016918A5059755277 @default.
- W4226016918 hasAuthorship W4226016918A5085651160 @default.
- W4226016918 hasAuthorship W4226016918A5088449459 @default.
- W4226016918 hasConcept C108583219 @default.
- W4226016918 hasConcept C119857082 @default.
- W4226016918 hasConcept C126322002 @default.
- W4226016918 hasConcept C126894567 @default.
- W4226016918 hasConcept C154945302 @default.
- W4226016918 hasConcept C159641895 @default.
- W4226016918 hasConcept C2778653478 @default.
- W4226016918 hasConcept C41008148 @default.
- W4226016918 hasConcept C50644808 @default.
- W4226016918 hasConcept C71924100 @default.
- W4226016918 hasConceptScore W4226016918C108583219 @default.
- W4226016918 hasConceptScore W4226016918C119857082 @default.
- W4226016918 hasConceptScore W4226016918C126322002 @default.
- W4226016918 hasConceptScore W4226016918C126894567 @default.
- W4226016918 hasConceptScore W4226016918C154945302 @default.