Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226021916> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4226021916 endingPage "98" @default.
- W4226021916 startingPage "87" @default.
- W4226021916 abstract "The devastating effect of spreading fake news related to politics, health, and customer reviews cannot be neglected over social media on the decision-making approach of an individual. The problem of fake news needs the attention of social media administrators, law enforcement agencies, and academic researchers. To handle this issue, researchers suggested various artificial intelligence techniques. However, most of the studies used only a specific type of news that leads to dataset biases. This study used three different standard datasets collected from Kaggle and GitHub. Preprocessed the datasets to remove unwanted text. Then these preprocessed datasets are applied on three classifiers: passive aggressive, machine learning, and naïve Bayes of 30–70, 40–60, 50–50, 60–40, and 70–30, respectively. To evaluate the performance accuracy, precision and recall are used. Results clearly show that this study outperforms the state-of-the-art techniques." @default.
- W4226021916 created "2022-05-05" @default.
- W4226021916 creator A5004403213 @default.
- W4226021916 creator A5016006425 @default.
- W4226021916 creator A5062907646 @default.
- W4226021916 creator A5065005205 @default.
- W4226021916 creator A5069595109 @default.
- W4226021916 date "2022-01-01" @default.
- W4226021916 modified "2023-09-27" @default.
- W4226021916 title "Fake News Identification on Social Media Using Machine Learning Techniques" @default.
- W4226021916 cites W1490892317 @default.
- W4226021916 cites W1964613733 @default.
- W4226021916 cites W1977764012 @default.
- W4226021916 cites W1978726191 @default.
- W4226021916 cites W1991084747 @default.
- W4226021916 cites W2052427829 @default.
- W4226021916 cites W2074835059 @default.
- W4226021916 cites W2163898372 @default.
- W4226021916 cites W2212029413 @default.
- W4226021916 cites W2416164492 @default.
- W4226021916 cites W2550819555 @default.
- W4226021916 cites W2620789444 @default.
- W4226021916 cites W2724523750 @default.
- W4226021916 cites W2742330194 @default.
- W4226021916 cites W2773666902 @default.
- W4226021916 cites W2790166049 @default.
- W4226021916 cites W2797202416 @default.
- W4226021916 cites W2908060971 @default.
- W4226021916 cites W2914393943 @default.
- W4226021916 cites W3101283776 @default.
- W4226021916 cites W3103872969 @default.
- W4226021916 cites W4301030907 @default.
- W4226021916 doi "https://doi.org/10.1007/978-981-16-7618-5_8" @default.
- W4226021916 hasPublicationYear "2022" @default.
- W4226021916 type Work @default.
- W4226021916 citedByCount "1" @default.
- W4226021916 countsByYear W42260219162022 @default.
- W4226021916 crossrefType "book-chapter" @default.
- W4226021916 hasAuthorship W4226021916A5004403213 @default.
- W4226021916 hasAuthorship W4226021916A5016006425 @default.
- W4226021916 hasAuthorship W4226021916A5062907646 @default.
- W4226021916 hasAuthorship W4226021916A5065005205 @default.
- W4226021916 hasAuthorship W4226021916A5069595109 @default.
- W4226021916 hasConcept C100660578 @default.
- W4226021916 hasConcept C116834253 @default.
- W4226021916 hasConcept C119857082 @default.
- W4226021916 hasConcept C12267149 @default.
- W4226021916 hasConcept C136764020 @default.
- W4226021916 hasConcept C154945302 @default.
- W4226021916 hasConcept C15744967 @default.
- W4226021916 hasConcept C17744445 @default.
- W4226021916 hasConcept C180747234 @default.
- W4226021916 hasConcept C199539241 @default.
- W4226021916 hasConcept C2522767166 @default.
- W4226021916 hasConcept C2780262971 @default.
- W4226021916 hasConcept C41008148 @default.
- W4226021916 hasConcept C518677369 @default.
- W4226021916 hasConcept C52001869 @default.
- W4226021916 hasConcept C59822182 @default.
- W4226021916 hasConcept C81669768 @default.
- W4226021916 hasConcept C86803240 @default.
- W4226021916 hasConceptScore W4226021916C100660578 @default.
- W4226021916 hasConceptScore W4226021916C116834253 @default.
- W4226021916 hasConceptScore W4226021916C119857082 @default.
- W4226021916 hasConceptScore W4226021916C12267149 @default.
- W4226021916 hasConceptScore W4226021916C136764020 @default.
- W4226021916 hasConceptScore W4226021916C154945302 @default.
- W4226021916 hasConceptScore W4226021916C15744967 @default.
- W4226021916 hasConceptScore W4226021916C17744445 @default.
- W4226021916 hasConceptScore W4226021916C180747234 @default.
- W4226021916 hasConceptScore W4226021916C199539241 @default.
- W4226021916 hasConceptScore W4226021916C2522767166 @default.
- W4226021916 hasConceptScore W4226021916C2780262971 @default.
- W4226021916 hasConceptScore W4226021916C41008148 @default.
- W4226021916 hasConceptScore W4226021916C518677369 @default.
- W4226021916 hasConceptScore W4226021916C52001869 @default.
- W4226021916 hasConceptScore W4226021916C59822182 @default.
- W4226021916 hasConceptScore W4226021916C81669768 @default.
- W4226021916 hasConceptScore W4226021916C86803240 @default.
- W4226021916 hasLocation W42260219161 @default.
- W4226021916 hasOpenAccess W4226021916 @default.
- W4226021916 hasPrimaryLocation W42260219161 @default.
- W4226021916 hasRelatedWork W1470425429 @default.
- W4226021916 hasRelatedWork W2595988085 @default.
- W4226021916 hasRelatedWork W3014815208 @default.
- W4226021916 hasRelatedWork W3107602296 @default.
- W4226021916 hasRelatedWork W3154941836 @default.
- W4226021916 hasRelatedWork W3204641204 @default.
- W4226021916 hasRelatedWork W4205958290 @default.
- W4226021916 hasRelatedWork W4280611221 @default.
- W4226021916 hasRelatedWork W4313444831 @default.
- W4226021916 hasRelatedWork W4316082230 @default.
- W4226021916 isParatext "false" @default.
- W4226021916 isRetracted "false" @default.
- W4226021916 workType "book-chapter" @default.