Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226022745> ?p ?o ?g. }
- W4226022745 endingPage "18" @default.
- W4226022745 startingPage "1" @default.
- W4226022745 abstract "Malware is a sophisticated, malicious, and sometimes unidentifiable application on the network. The classifying network traffic method using machine learning shows to perform well in detecting malware. In the literature, it is reported that this good performance can depend on a reduced set of network features. This study presents an empirical evaluation of two statistical methods of reduction and selection of features in an Android network traffic dataset using six supervised algorithms: Naïve Bayes, support vector machine, multilayer perceptron neural network, decision tree, random forest, and K-nearest neighbors. The principal component analysis (PCA) and logistic regression (LR) methods with <math xmlns=http://www.w3.org/1998/Math/MathML id=M1> <mi>p</mi> </math> value were applied to select the most representative features related to the time properties of flows and features of bidirectional packets. The selected features were used to train the algorithms using binary and multiclass classification. For performance evaluation and comparison metrics, precision, recall, F-measure, accuracy, and area under the curve (AUC-ROC) were used. The empirical results show that random forest obtains an average accuracy of 96% and an AUC-ROC of 0.98 in binary classification. For the case of multiclass classification, again random forest achieves an average accuracy of 87% and an AUC-ROC over 95%, exhibiting better performance than the other machine learning algorithms. In both experiments, the 13 most representative features of a mixed set of flow time properties and bidirectional network packets selected by LR were used. In the case of the other five classifiers, their results in terms of precision, recall, and accuracy, are competitive with those obtained in related works, which used a greater number of input features. Therefore, it is empirically evidenced that the proposed method for the selection of features, based on statistical techniques of reduction and extraction of attributes, allows improving the identification performance of malware traffic, discriminating it from the benign traffic of Android applications." @default.
- W4226022745 created "2022-05-05" @default.
- W4226022745 creator A5037617485 @default.
- W4226022745 creator A5047716888 @default.
- W4226022745 creator A5060474371 @default.
- W4226022745 creator A5061383144 @default.
- W4226022745 date "2022-04-07" @default.
- W4226022745 modified "2023-09-30" @default.
- W4226022745 title "An Empirical Evaluation of Supervised Learning Methods for Network Malware Identification Based on Feature Selection" @default.
- W4226022745 cites W1517228774 @default.
- W4226022745 cites W1968185194 @default.
- W4226022745 cites W1985258161 @default.
- W4226022745 cites W2037717889 @default.
- W4226022745 cites W2046843253 @default.
- W4226022745 cites W2050341986 @default.
- W4226022745 cites W2075932300 @default.
- W4226022745 cites W2080157505 @default.
- W4226022745 cites W2104209065 @default.
- W4226022745 cites W2167101736 @default.
- W4226022745 cites W2182464523 @default.
- W4226022745 cites W2332856097 @default.
- W4226022745 cites W2347098755 @default.
- W4226022745 cites W2475392251 @default.
- W4226022745 cites W2512876749 @default.
- W4226022745 cites W2527763677 @default.
- W4226022745 cites W2575599800 @default.
- W4226022745 cites W2609225916 @default.
- W4226022745 cites W2744896416 @default.
- W4226022745 cites W2767863364 @default.
- W4226022745 cites W2768073432 @default.
- W4226022745 cites W2783895426 @default.
- W4226022745 cites W2789539798 @default.
- W4226022745 cites W2793188405 @default.
- W4226022745 cites W2800509541 @default.
- W4226022745 cites W2885747980 @default.
- W4226022745 cites W2897202622 @default.
- W4226022745 cites W2897230315 @default.
- W4226022745 cites W2898258005 @default.
- W4226022745 cites W2903199472 @default.
- W4226022745 cites W2906631928 @default.
- W4226022745 cites W2910470804 @default.
- W4226022745 cites W2911964244 @default.
- W4226022745 cites W2913540660 @default.
- W4226022745 cites W2942239200 @default.
- W4226022745 cites W2961850650 @default.
- W4226022745 cites W2963204406 @default.
- W4226022745 cites W2964136807 @default.
- W4226022745 cites W2996806689 @default.
- W4226022745 cites W3005124797 @default.
- W4226022745 cites W3005555687 @default.
- W4226022745 cites W3014732532 @default.
- W4226022745 cites W3017679144 @default.
- W4226022745 cites W3021274205 @default.
- W4226022745 cites W3038715341 @default.
- W4226022745 cites W3039088822 @default.
- W4226022745 cites W3042454706 @default.
- W4226022745 cites W3046278837 @default.
- W4226022745 cites W3046679409 @default.
- W4226022745 cites W3080622597 @default.
- W4226022745 cites W3083177412 @default.
- W4226022745 cites W3095781263 @default.
- W4226022745 cites W3111150435 @default.
- W4226022745 cites W3147751175 @default.
- W4226022745 cites W327516194 @default.
- W4226022745 cites W4249247926 @default.
- W4226022745 cites W4301003819 @default.
- W4226022745 cites W625202211 @default.
- W4226022745 doi "https://doi.org/10.1155/2022/6760920" @default.
- W4226022745 hasPublicationYear "2022" @default.
- W4226022745 type Work @default.
- W4226022745 citedByCount "4" @default.
- W4226022745 countsByYear W42260227452022 @default.
- W4226022745 countsByYear W42260227452023 @default.
- W4226022745 crossrefType "journal-article" @default.
- W4226022745 hasAuthorship W4226022745A5037617485 @default.
- W4226022745 hasAuthorship W4226022745A5047716888 @default.
- W4226022745 hasAuthorship W4226022745A5060474371 @default.
- W4226022745 hasAuthorship W4226022745A5061383144 @default.
- W4226022745 hasBestOaLocation W42260227451 @default.
- W4226022745 hasConcept C111919701 @default.
- W4226022745 hasConcept C119857082 @default.
- W4226022745 hasConcept C12267149 @default.
- W4226022745 hasConcept C124101348 @default.
- W4226022745 hasConcept C148483581 @default.
- W4226022745 hasConcept C153180895 @default.
- W4226022745 hasConcept C154945302 @default.
- W4226022745 hasConcept C158379750 @default.
- W4226022745 hasConcept C169258074 @default.
- W4226022745 hasConcept C179717631 @default.
- W4226022745 hasConcept C31258907 @default.
- W4226022745 hasConcept C41008148 @default.
- W4226022745 hasConcept C50644808 @default.
- W4226022745 hasConcept C52001869 @default.
- W4226022745 hasConcept C541664917 @default.
- W4226022745 hasConcept C60908668 @default.
- W4226022745 hasConcept C66905080 @default.
- W4226022745 hasConcept C84525736 @default.
- W4226022745 hasConceptScore W4226022745C111919701 @default.