Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226026152> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4226026152 abstract "Short-term traffic flow is an essential guarantee for realizing traffic flow prediction and control. Because of the randomness and complexity of traffic flow, this paper proposes a CEEMDAN-PE-BiGRU combined model based on the optimization of attention mechanisms. Firstly, this paper uses the CEEMDAN algorithm to decompose the unsteady original traffic flow data into multiple relatively stable modal components. Then, the PE algorithm is used to calculate the permutation entropy value of the IMF components, and the components with similar entropy values are superimposed to form a new sequence; BiGRU is adopted to extract the hidden features of the time series data in each component. After the attention mechanism highlights the key features, each sequence is predicted separately; finally, the prediction results of each component are superimposed to obtain the final predicted value. Moreover, use the measured traffic flow data near the British M25 high-speed Heathrow Airport, for example, verification. The results show that the prediction effect of the CEEMDAN-PE-BiGRU combination model is significantly better than that of the BiGRU model, the BP model, and the ABiGRU model. With the prediction error greatly reduced, the fitting accuracy was improved by 0.055, 0.048, and 0.000056 compared with BiGRU, BP, and ABiGRU, respectively, and the average prediction accuracy was improved by 10.96% and 0.48% compared with BiGRU and ABiGRU, respectively. The CEEMDAN-PE-BiGRU combined model can accurately extract the latent features of the traffic flow time series data, improve the prediction accuracy, and provide scientific and technical support for the intelligent transportation system." @default.
- W4226026152 created "2022-05-05" @default.
- W4226026152 creator A5003443735 @default.
- W4226026152 creator A5014796204 @default.
- W4226026152 creator A5024738219 @default.
- W4226026152 date "2022-01-01" @default.
- W4226026152 modified "2023-09-28" @default.
- W4226026152 title "Short-Term Traffic Flow Prediction of Expressway Based on CEEMDAN-PE-BiGRU Combined Model Optimized By Attention Mechanism" @default.
- W4226026152 cites W1973048907 @default.
- W4226026152 cites W2007221293 @default.
- W4226026152 cites W2014683958 @default.
- W4226026152 cites W2060540122 @default.
- W4226026152 cites W2102825799 @default.
- W4226026152 cites W2120390927 @default.
- W4226026152 cites W2125056386 @default.
- W4226026152 cites W2573483481 @default.
- W4226026152 cites W2799698500 @default.
- W4226026152 cites W2808956223 @default.
- W4226026152 cites W2890733607 @default.
- W4226026152 cites W2905938231 @default.
- W4226026152 cites W2921417096 @default.
- W4226026152 cites W2924028299 @default.
- W4226026152 cites W2973449430 @default.
- W4226026152 cites W2976673245 @default.
- W4226026152 cites W2980970610 @default.
- W4226026152 cites W3007926275 @default.
- W4226026152 cites W3012958665 @default.
- W4226026152 cites W3081968735 @default.
- W4226026152 cites W3092608851 @default.
- W4226026152 doi "https://doi.org/10.1109/bdicn55575.2022.00023" @default.
- W4226026152 hasPublicationYear "2022" @default.
- W4226026152 type Work @default.
- W4226026152 citedByCount "1" @default.
- W4226026152 countsByYear W42260261522022 @default.
- W4226026152 crossrefType "proceedings-article" @default.
- W4226026152 hasAuthorship W4226026152A5003443735 @default.
- W4226026152 hasAuthorship W4226026152A5014796204 @default.
- W4226026152 hasAuthorship W4226026152A5024738219 @default.
- W4226026152 hasConcept C105795698 @default.
- W4226026152 hasConcept C106301342 @default.
- W4226026152 hasConcept C11413529 @default.
- W4226026152 hasConcept C121332964 @default.
- W4226026152 hasConcept C125112378 @default.
- W4226026152 hasConcept C154945302 @default.
- W4226026152 hasConcept C29314403 @default.
- W4226026152 hasConcept C33923547 @default.
- W4226026152 hasConcept C41008148 @default.
- W4226026152 hasConcept C44154836 @default.
- W4226026152 hasConcept C62520636 @default.
- W4226026152 hasConceptScore W4226026152C105795698 @default.
- W4226026152 hasConceptScore W4226026152C106301342 @default.
- W4226026152 hasConceptScore W4226026152C11413529 @default.
- W4226026152 hasConceptScore W4226026152C121332964 @default.
- W4226026152 hasConceptScore W4226026152C125112378 @default.
- W4226026152 hasConceptScore W4226026152C154945302 @default.
- W4226026152 hasConceptScore W4226026152C29314403 @default.
- W4226026152 hasConceptScore W4226026152C33923547 @default.
- W4226026152 hasConceptScore W4226026152C41008148 @default.
- W4226026152 hasConceptScore W4226026152C44154836 @default.
- W4226026152 hasConceptScore W4226026152C62520636 @default.
- W4226026152 hasLocation W42260261521 @default.
- W4226026152 hasOpenAccess W4226026152 @default.
- W4226026152 hasPrimaryLocation W42260261521 @default.
- W4226026152 hasRelatedWork W2333698505 @default.
- W4226026152 hasRelatedWork W2351491280 @default.
- W4226026152 hasRelatedWork W2360514482 @default.
- W4226026152 hasRelatedWork W2371447506 @default.
- W4226026152 hasRelatedWork W2386767533 @default.
- W4226026152 hasRelatedWork W2785866029 @default.
- W4226026152 hasRelatedWork W2951756867 @default.
- W4226026152 hasRelatedWork W303980170 @default.
- W4226026152 hasRelatedWork W3107474891 @default.
- W4226026152 hasRelatedWork W4224457755 @default.
- W4226026152 isParatext "false" @default.
- W4226026152 isRetracted "false" @default.
- W4226026152 workType "article" @default.