Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226036745> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4226036745 abstract "Real-time and human-interpretable decision-making in cyber-physical systems is a significant but challenging task, which usually requires predictions of possible future events from limited data. In this paper, we introduce a time-incremental learning framework: given a dataset of labeled signal traces with a common time horizon, we propose a method to predict the label of a signal that is received incrementally over time, referred to as prefix signal. Prefix signals are the signals that are being observed as they are generated, and their time length is shorter than the common horizon of signals. We present a novel decision-tree based approach to generate a finite number of Signal Temporal Logic (STL) specifications from the given dataset, and construct a predictor based on them. Each STL specification, as a binary classifier of time-series data, captures the temporal properties of the dataset over time. The predictor is constructed by assigning time-variant weights to the STL formulas. The weights are learned by using neural networks, with the goal of minimizing the misclassification rate for the prefix signals defined over the given dataset. The learned predictor is used to predict the label of a prefix signal, by computing the weighted sum of the robustness of the prefix signal with respect to each STL formula. The effectiveness and classification performance of our algorithm are evaluated on an urban-driving and a naval-surveillance case studies." @default.
- W4226036745 created "2022-05-05" @default.
- W4226036745 creator A5042146883 @default.
- W4226036745 creator A5051737344 @default.
- W4226036745 creator A5086654963 @default.
- W4226036745 creator A5086742095 @default.
- W4226036745 date "2021-12-28" @default.
- W4226036745 modified "2023-09-26" @default.
- W4226036745 title "Time-Incremental Learning from Data Using Temporal Logics" @default.
- W4226036745 doi "https://doi.org/10.48550/arxiv.2112.14300" @default.
- W4226036745 hasPublicationYear "2021" @default.
- W4226036745 type Work @default.
- W4226036745 citedByCount "0" @default.
- W4226036745 crossrefType "posted-content" @default.
- W4226036745 hasAuthorship W4226036745A5042146883 @default.
- W4226036745 hasAuthorship W4226036745A5051737344 @default.
- W4226036745 hasAuthorship W4226036745A5086654963 @default.
- W4226036745 hasAuthorship W4226036745A5086742095 @default.
- W4226036745 hasBestOaLocation W42260367451 @default.
- W4226036745 hasConcept C104317684 @default.
- W4226036745 hasConcept C11413529 @default.
- W4226036745 hasConcept C119857082 @default.
- W4226036745 hasConcept C124101348 @default.
- W4226036745 hasConcept C127162648 @default.
- W4226036745 hasConcept C138885662 @default.
- W4226036745 hasConcept C141603448 @default.
- W4226036745 hasConcept C151406439 @default.
- W4226036745 hasConcept C153180895 @default.
- W4226036745 hasConcept C154945302 @default.
- W4226036745 hasConcept C185592680 @default.
- W4226036745 hasConcept C199360897 @default.
- W4226036745 hasConcept C2778775284 @default.
- W4226036745 hasConcept C2779843651 @default.
- W4226036745 hasConcept C31258907 @default.
- W4226036745 hasConcept C40409654 @default.
- W4226036745 hasConcept C41008148 @default.
- W4226036745 hasConcept C41895202 @default.
- W4226036745 hasConcept C55493867 @default.
- W4226036745 hasConcept C63479239 @default.
- W4226036745 hasConcept C84525736 @default.
- W4226036745 hasConcept C95623464 @default.
- W4226036745 hasConceptScore W4226036745C104317684 @default.
- W4226036745 hasConceptScore W4226036745C11413529 @default.
- W4226036745 hasConceptScore W4226036745C119857082 @default.
- W4226036745 hasConceptScore W4226036745C124101348 @default.
- W4226036745 hasConceptScore W4226036745C127162648 @default.
- W4226036745 hasConceptScore W4226036745C138885662 @default.
- W4226036745 hasConceptScore W4226036745C141603448 @default.
- W4226036745 hasConceptScore W4226036745C151406439 @default.
- W4226036745 hasConceptScore W4226036745C153180895 @default.
- W4226036745 hasConceptScore W4226036745C154945302 @default.
- W4226036745 hasConceptScore W4226036745C185592680 @default.
- W4226036745 hasConceptScore W4226036745C199360897 @default.
- W4226036745 hasConceptScore W4226036745C2778775284 @default.
- W4226036745 hasConceptScore W4226036745C2779843651 @default.
- W4226036745 hasConceptScore W4226036745C31258907 @default.
- W4226036745 hasConceptScore W4226036745C40409654 @default.
- W4226036745 hasConceptScore W4226036745C41008148 @default.
- W4226036745 hasConceptScore W4226036745C41895202 @default.
- W4226036745 hasConceptScore W4226036745C55493867 @default.
- W4226036745 hasConceptScore W4226036745C63479239 @default.
- W4226036745 hasConceptScore W4226036745C84525736 @default.
- W4226036745 hasConceptScore W4226036745C95623464 @default.
- W4226036745 hasLocation W42260367451 @default.
- W4226036745 hasOpenAccess W4226036745 @default.
- W4226036745 hasPrimaryLocation W42260367451 @default.
- W4226036745 hasRelatedWork W1470425429 @default.
- W4226036745 hasRelatedWork W2563096758 @default.
- W4226036745 hasRelatedWork W4205478082 @default.
- W4226036745 hasRelatedWork W4281385048 @default.
- W4226036745 hasRelatedWork W4308829884 @default.
- W4226036745 hasRelatedWork W4318350883 @default.
- W4226036745 hasRelatedWork W4328134586 @default.
- W4226036745 hasRelatedWork W4385574003 @default.
- W4226036745 hasRelatedWork W4386053843 @default.
- W4226036745 hasRelatedWork W3158004940 @default.
- W4226036745 isParatext "false" @default.
- W4226036745 isRetracted "false" @default.
- W4226036745 workType "article" @default.