Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226039728> ?p ?o ?g. }
- W4226039728 endingPage "142741" @default.
- W4226039728 startingPage "142741" @default.
- W4226039728 abstract "Graphene has been extensively used in graphene reinforced metal composite, with strengthening effects due to its ability to block dislocation from propagation during the traditional low strain rate deformation process. Laser shock peening has been applied in graphene/metal composites with graphene concentration of 2–10% with a relatively close distance between the graphene layers. This work discovered a strong long-range coupling effects of graphene as a super-strong nanomaterial and shock-wave transmitter during laser shock processing under room temperature LSP and cryogenic temperature (cLSP), under extremely low graphene concentration (1.42 × 10 −6 % vol.). Compared with simple compressed graphene-copper heterostructure, the yield strength of LSP and cLSP processed samples increases by 40%, and 76% respectively. We found that under laser shock peening (LSP) process, the shock wave can pass through long-distance to generate dislocation transportation from one layer to another graphene with the shock wave interaction between graphene layers separated very far away. Graphene plays an important role not only as a transmitter of shock waves, but also as a strong wall to bounce back shock waves to generate high dislocation density around graphene layers. We have designed experiments to compare the deformation behavior of the laminates under three deformation conditions: compression, LSP, and cLSP, respectively. It was found that the compressed sample has very few parallel dislocation arrays beneath the graphene interface, indicating that graphene blocks the dislocation movement and has very limited strengthening effects. The LSP processed samples contain much high dislocation density, while even higher density dislocation and strength are found in cLSP due to faster shock transportation in graphene/metal layers under cryogenic conditions. Finite element modeling was used to investigate the shock wave interaction with the graphene and metal layer under various conditions, which is consistent with experiments. Molecular dynamics simulation is used to simulate the microstructure of the laminates under various conditions and validated by experiments. This work provides a starting point to understand the long-range strengthening effects of 2D nanomaterials of extremely low concentrations and provide new design strategies for manufacturing graphene-metal nanocomposite and their strengthening approaches. • We discovered a strong long-range coupling effects of graphene during LSP, at extremely low graphene concentration. • Compared with compression, the strength of graphene-Cu heterostructure after LSP and cLSP increases by 40% and 76%, resp. • The deformation behavior and mechanics during LSP of the heterostructure have been studied by FEM and MD simulation. • Shock wave can pass through long-distance to generate dislocation propagation and multiplication via a few graphene layers. • The increase of strength under cLSP is due to suppressed dislocation recovery and faster wave propagation." @default.
- W4226039728 created "2022-05-05" @default.
- W4226039728 creator A5025976274 @default.
- W4226039728 creator A5026877969 @default.
- W4226039728 creator A5041660514 @default.
- W4226039728 creator A5051321761 @default.
- W4226039728 creator A5057355127 @default.
- W4226039728 creator A5074293173 @default.
- W4226039728 creator A5075914865 @default.
- W4226039728 date "2022-03-01" @default.
- W4226039728 modified "2023-09-29" @default.
- W4226039728 title "Understanding the role of monolayer graphene during long range shock strengthening of metal-graphene heterostructure" @default.
- W4226039728 cites W1988219176 @default.
- W4226039728 cites W1992399670 @default.
- W4226039728 cites W2002529768 @default.
- W4226039728 cites W2014067948 @default.
- W4226039728 cites W2017731334 @default.
- W4226039728 cites W2025545956 @default.
- W4226039728 cites W2030961477 @default.
- W4226039728 cites W2041799480 @default.
- W4226039728 cites W2042216500 @default.
- W4226039728 cites W2042857164 @default.
- W4226039728 cites W2043610780 @default.
- W4226039728 cites W2063769310 @default.
- W4226039728 cites W2066211671 @default.
- W4226039728 cites W2073548343 @default.
- W4226039728 cites W2107660519 @default.
- W4226039728 cites W2150492737 @default.
- W4226039728 cites W2153074439 @default.
- W4226039728 cites W2268071883 @default.
- W4226039728 cites W2280067276 @default.
- W4226039728 cites W2339876572 @default.
- W4226039728 cites W2389304112 @default.
- W4226039728 cites W2570221898 @default.
- W4226039728 cites W2573604727 @default.
- W4226039728 cites W2599568076 @default.
- W4226039728 cites W2617448909 @default.
- W4226039728 cites W2692988050 @default.
- W4226039728 cites W2737050129 @default.
- W4226039728 cites W2738540209 @default.
- W4226039728 cites W2788959562 @default.
- W4226039728 cites W2792235744 @default.
- W4226039728 cites W2793147311 @default.
- W4226039728 cites W2947618356 @default.
- W4226039728 cites W3168637199 @default.
- W4226039728 cites W3182914411 @default.
- W4226039728 doi "https://doi.org/10.1016/j.msea.2022.142741" @default.
- W4226039728 hasPublicationYear "2022" @default.
- W4226039728 type Work @default.
- W4226039728 citedByCount "2" @default.
- W4226039728 countsByYear W42260397282022 @default.
- W4226039728 countsByYear W42260397282023 @default.
- W4226039728 crossrefType "journal-article" @default.
- W4226039728 hasAuthorship W4226039728A5025976274 @default.
- W4226039728 hasAuthorship W4226039728A5026877969 @default.
- W4226039728 hasAuthorship W4226039728A5041660514 @default.
- W4226039728 hasAuthorship W4226039728A5051321761 @default.
- W4226039728 hasAuthorship W4226039728A5057355127 @default.
- W4226039728 hasAuthorship W4226039728A5074293173 @default.
- W4226039728 hasAuthorship W4226039728A5075914865 @default.
- W4226039728 hasBestOaLocation W42260397281 @default.
- W4226039728 hasConcept C126322002 @default.
- W4226039728 hasConcept C171250308 @default.
- W4226039728 hasConcept C191897082 @default.
- W4226039728 hasConcept C192562407 @default.
- W4226039728 hasConcept C205286655 @default.
- W4226039728 hasConcept C2781300812 @default.
- W4226039728 hasConcept C30080830 @default.
- W4226039728 hasConcept C49040817 @default.
- W4226039728 hasConcept C544153396 @default.
- W4226039728 hasConcept C7070889 @default.
- W4226039728 hasConcept C71924100 @default.
- W4226039728 hasConcept C79794668 @default.
- W4226039728 hasConceptScore W4226039728C126322002 @default.
- W4226039728 hasConceptScore W4226039728C171250308 @default.
- W4226039728 hasConceptScore W4226039728C191897082 @default.
- W4226039728 hasConceptScore W4226039728C192562407 @default.
- W4226039728 hasConceptScore W4226039728C205286655 @default.
- W4226039728 hasConceptScore W4226039728C2781300812 @default.
- W4226039728 hasConceptScore W4226039728C30080830 @default.
- W4226039728 hasConceptScore W4226039728C49040817 @default.
- W4226039728 hasConceptScore W4226039728C544153396 @default.
- W4226039728 hasConceptScore W4226039728C7070889 @default.
- W4226039728 hasConceptScore W4226039728C71924100 @default.
- W4226039728 hasConceptScore W4226039728C79794668 @default.
- W4226039728 hasFunder F4320306076 @default.
- W4226039728 hasLocation W42260397281 @default.
- W4226039728 hasOpenAccess W4226039728 @default.
- W4226039728 hasPrimaryLocation W42260397281 @default.
- W4226039728 hasRelatedWork W1555779774 @default.
- W4226039728 hasRelatedWork W2054558880 @default.
- W4226039728 hasRelatedWork W2058676402 @default.
- W4226039728 hasRelatedWork W2105665999 @default.
- W4226039728 hasRelatedWork W2119117001 @default.
- W4226039728 hasRelatedWork W2134948224 @default.
- W4226039728 hasRelatedWork W2728665757 @default.
- W4226039728 hasRelatedWork W2997362694 @default.
- W4226039728 hasRelatedWork W3111609763 @default.