Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226044200> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4226044200 endingPage "206" @default.
- W4226044200 startingPage "191" @default.
- W4226044200 abstract "Given that physics-based models can be difficult to derive, data-driven models have been widely used for remaining useful life (RUL) prediction, which is a key element for predictive maintenance. In industrial applications, although the models have to be trained in a short time with limited computational resources, recent research using back propagation neural networks (BPNNs) has focused only on minimizing the RUL prediction error, without considering the time needed for training. Driven by this motivation, here we consider a simple and fast neural network, named extreme learning machine (ELM), and we optimize it for the specific case of RUL prediction. In particular, we propose to apply both single-objective and multi-objective optimization to search for the best ELM architectures in terms of a trade-off between RUL prediction error and training time, the latter being determined by the number of trainable parameters. We perform a comparative analysis on a recent benchmark dataset, the N-CMAPSS, in which we compare the proposed methods with other algorithms based on BPNNs. The results show that while the optimized ELMs perform slightly worse than the BPNNs in terms of RUL prediction error, they require a significantly shorter (up to 2 orders of magnitude) training time." @default.
- W4226044200 created "2022-05-05" @default.
- W4226044200 creator A5007121933 @default.
- W4226044200 creator A5071501935 @default.
- W4226044200 date "2022-01-01" @default.
- W4226044200 modified "2023-10-06" @default.
- W4226044200 title "Multi-objective Optimization of Extreme Learning Machine for Remaining Useful Life Prediction" @default.
- W4226044200 cites W2111072639 @default.
- W4226044200 cites W2120841219 @default.
- W4226044200 cites W2126105956 @default.
- W4226044200 cites W2161055889 @default.
- W4226044200 cites W2209764198 @default.
- W4226044200 cites W2415594836 @default.
- W4226044200 cites W2576071426 @default.
- W4226044200 cites W2744067593 @default.
- W4226044200 cites W2772084711 @default.
- W4226044200 cites W2772178611 @default.
- W4226044200 cites W2775043420 @default.
- W4226044200 cites W2904714974 @default.
- W4226044200 cites W2944364052 @default.
- W4226044200 cites W2954234207 @default.
- W4226044200 cites W3006585575 @default.
- W4226044200 cites W3046910774 @default.
- W4226044200 cites W3093330784 @default.
- W4226044200 cites W3119743098 @default.
- W4226044200 cites W3141188857 @default.
- W4226044200 cites W3157487644 @default.
- W4226044200 cites W3160886584 @default.
- W4226044200 cites W3199215188 @default.
- W4226044200 doi "https://doi.org/10.1007/978-3-031-02462-7_13" @default.
- W4226044200 hasPublicationYear "2022" @default.
- W4226044200 type Work @default.
- W4226044200 citedByCount "3" @default.
- W4226044200 countsByYear W42260442002022 @default.
- W4226044200 countsByYear W42260442002023 @default.
- W4226044200 crossrefType "book-chapter" @default.
- W4226044200 hasAuthorship W4226044200A5007121933 @default.
- W4226044200 hasAuthorship W4226044200A5071501935 @default.
- W4226044200 hasBestOaLocation W42260442002 @default.
- W4226044200 hasConcept C111472728 @default.
- W4226044200 hasConcept C119857082 @default.
- W4226044200 hasConcept C124101348 @default.
- W4226044200 hasConcept C13280743 @default.
- W4226044200 hasConcept C138885662 @default.
- W4226044200 hasConcept C154945302 @default.
- W4226044200 hasConcept C167085575 @default.
- W4226044200 hasConcept C185798385 @default.
- W4226044200 hasConcept C205649164 @default.
- W4226044200 hasConcept C26517878 @default.
- W4226044200 hasConcept C2780150128 @default.
- W4226044200 hasConcept C2780586882 @default.
- W4226044200 hasConcept C38652104 @default.
- W4226044200 hasConcept C41008148 @default.
- W4226044200 hasConcept C45804977 @default.
- W4226044200 hasConcept C50644808 @default.
- W4226044200 hasConceptScore W4226044200C111472728 @default.
- W4226044200 hasConceptScore W4226044200C119857082 @default.
- W4226044200 hasConceptScore W4226044200C124101348 @default.
- W4226044200 hasConceptScore W4226044200C13280743 @default.
- W4226044200 hasConceptScore W4226044200C138885662 @default.
- W4226044200 hasConceptScore W4226044200C154945302 @default.
- W4226044200 hasConceptScore W4226044200C167085575 @default.
- W4226044200 hasConceptScore W4226044200C185798385 @default.
- W4226044200 hasConceptScore W4226044200C205649164 @default.
- W4226044200 hasConceptScore W4226044200C26517878 @default.
- W4226044200 hasConceptScore W4226044200C2780150128 @default.
- W4226044200 hasConceptScore W4226044200C2780586882 @default.
- W4226044200 hasConceptScore W4226044200C38652104 @default.
- W4226044200 hasConceptScore W4226044200C41008148 @default.
- W4226044200 hasConceptScore W4226044200C45804977 @default.
- W4226044200 hasConceptScore W4226044200C50644808 @default.
- W4226044200 hasLocation W42260442001 @default.
- W4226044200 hasLocation W42260442002 @default.
- W4226044200 hasOpenAccess W4226044200 @default.
- W4226044200 hasPrimaryLocation W42260442001 @default.
- W4226044200 hasRelatedWork W1525510058 @default.
- W4226044200 hasRelatedWork W2038860231 @default.
- W4226044200 hasRelatedWork W2556319748 @default.
- W4226044200 hasRelatedWork W2745001724 @default.
- W4226044200 hasRelatedWork W2946016983 @default.
- W4226044200 hasRelatedWork W3160244858 @default.
- W4226044200 hasRelatedWork W3185179407 @default.
- W4226044200 hasRelatedWork W4313488044 @default.
- W4226044200 hasRelatedWork W4384300587 @default.
- W4226044200 hasRelatedWork W4385730426 @default.
- W4226044200 isParatext "false" @default.
- W4226044200 isRetracted "false" @default.
- W4226044200 workType "book-chapter" @default.