Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226057327> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4226057327 endingPage "107624" @default.
- W4226057327 startingPage "107624" @default.
- W4226057327 abstract "Mixed convection phenomenon over radiant cooled surfaces with displacement ventilation in living environments is becoming a popular issue due to the airborne viruses and energy economy. Artificial neural networks are one of the machine learning methods that are widely evaluated as an engineering tool. In the current study, heat transfer coefficients for a radiant wall cooling system coupled with mixed and forced convection have been predicted by a machine learning approach. This approach should be noted as a first experimental investigation couple with an artificial neural network analysis in the open sources in which mixed convection systems in real sized living environments is examined. Experimentally obtained heat transfer coefficients have been used in the development of the feed forward back propagation multi-layer perceptron network structure. So as to analyze the impact of the input factors on the prediction performance, two neural network structures with dissimilar input parameters such as various temperatures, velocities, and heat transfer rates have been developed. By means of feed forward back propagation multi-layer perceptron neural network algorithms, convection, radiation, and total heat transfer coefficients have been predicted using the experimentally acquired dataset including 35 data points belonging to the mixed and forced convection conditions. Training, validation, and test data groups include 70%, 15%, and 15% of the dataset, in turn. Training algorithm has been computed via Levenberg-Marquardt one with 10 neurons in the hidden layer. The findings obtained from the computational solution have been evaluated as a result of the contrast with the target data with in the ±5% deviation band for all heat transfer coefficients. The performance factors have been computed and the estimation precision of the numerical models has been thoroughly examined." @default.
- W4226057327 created "2022-05-05" @default.
- W4226057327 creator A5008851392 @default.
- W4226057327 creator A5015731358 @default.
- W4226057327 creator A5035397938 @default.
- W4226057327 creator A5051241673 @default.
- W4226057327 creator A5070485501 @default.
- W4226057327 date "2022-08-01" @default.
- W4226057327 modified "2023-10-17" @default.
- W4226057327 title "Machine learning approach to predict the heat transfer coefficients pertaining to a radiant cooling system coupled with mixed and forced convection" @default.
- W4226057327 cites W1963936277 @default.
- W4226057327 cites W1992795165 @default.
- W4226057327 cites W2000252144 @default.
- W4226057327 cites W2049992725 @default.
- W4226057327 cites W2077044530 @default.
- W4226057327 cites W2132064519 @default.
- W4226057327 cites W2343035879 @default.
- W4226057327 cites W2492230431 @default.
- W4226057327 cites W2517752774 @default.
- W4226057327 cites W2526678394 @default.
- W4226057327 cites W2537219359 @default.
- W4226057327 cites W2564151033 @default.
- W4226057327 cites W2586350318 @default.
- W4226057327 cites W2587595623 @default.
- W4226057327 cites W2597219005 @default.
- W4226057327 cites W2769211284 @default.
- W4226057327 cites W2902857841 @default.
- W4226057327 cites W2938505903 @default.
- W4226057327 cites W2963056712 @default.
- W4226057327 cites W2995456772 @default.
- W4226057327 cites W2996906483 @default.
- W4226057327 cites W3021125684 @default.
- W4226057327 cites W3040992767 @default.
- W4226057327 cites W3152971724 @default.
- W4226057327 cites W3175313239 @default.
- W4226057327 cites W3203747215 @default.
- W4226057327 cites W4205753465 @default.
- W4226057327 cites W4206714470 @default.
- W4226057327 cites W2149478966 @default.
- W4226057327 doi "https://doi.org/10.1016/j.ijthermalsci.2022.107624" @default.
- W4226057327 hasPublicationYear "2022" @default.
- W4226057327 type Work @default.
- W4226057327 citedByCount "26" @default.
- W4226057327 countsByYear W42260573272022 @default.
- W4226057327 countsByYear W42260573272023 @default.
- W4226057327 crossrefType "journal-article" @default.
- W4226057327 hasAuthorship W4226057327A5008851392 @default.
- W4226057327 hasAuthorship W4226057327A5015731358 @default.
- W4226057327 hasAuthorship W4226057327A5035397938 @default.
- W4226057327 hasAuthorship W4226057327A5051241673 @default.
- W4226057327 hasAuthorship W4226057327A5070485501 @default.
- W4226057327 hasConcept C10899652 @default.
- W4226057327 hasConcept C121332964 @default.
- W4226057327 hasConcept C154945302 @default.
- W4226057327 hasConcept C179717631 @default.
- W4226057327 hasConcept C189234753 @default.
- W4226057327 hasConcept C24561367 @default.
- W4226057327 hasConcept C41008148 @default.
- W4226057327 hasConcept C50517652 @default.
- W4226057327 hasConcept C50644808 @default.
- W4226057327 hasConcept C54791560 @default.
- W4226057327 hasConcept C57879066 @default.
- W4226057327 hasConcept C60908668 @default.
- W4226057327 hasConceptScore W4226057327C10899652 @default.
- W4226057327 hasConceptScore W4226057327C121332964 @default.
- W4226057327 hasConceptScore W4226057327C154945302 @default.
- W4226057327 hasConceptScore W4226057327C179717631 @default.
- W4226057327 hasConceptScore W4226057327C189234753 @default.
- W4226057327 hasConceptScore W4226057327C24561367 @default.
- W4226057327 hasConceptScore W4226057327C41008148 @default.
- W4226057327 hasConceptScore W4226057327C50517652 @default.
- W4226057327 hasConceptScore W4226057327C50644808 @default.
- W4226057327 hasConceptScore W4226057327C54791560 @default.
- W4226057327 hasConceptScore W4226057327C57879066 @default.
- W4226057327 hasConceptScore W4226057327C60908668 @default.
- W4226057327 hasLocation W42260573271 @default.
- W4226057327 hasOpenAccess W4226057327 @default.
- W4226057327 hasPrimaryLocation W42260573271 @default.
- W4226057327 hasRelatedWork W174987726 @default.
- W4226057327 hasRelatedWork W1992246472 @default.
- W4226057327 hasRelatedWork W2009323381 @default.
- W4226057327 hasRelatedWork W2025497157 @default.
- W4226057327 hasRelatedWork W2043758363 @default.
- W4226057327 hasRelatedWork W2087997852 @default.
- W4226057327 hasRelatedWork W2319467277 @default.
- W4226057327 hasRelatedWork W3152747605 @default.
- W4226057327 hasRelatedWork W4239937462 @default.
- W4226057327 hasRelatedWork W4292267331 @default.
- W4226057327 hasVolume "178" @default.
- W4226057327 isParatext "false" @default.
- W4226057327 isRetracted "false" @default.
- W4226057327 workType "article" @default.